Download Free Seismic Performance Evaluation Of Multi Column Bridge Bent Retrofitted With Different Alternatives Book in PDF and EPUB Free Download. You can read online Seismic Performance Evaluation Of Multi Column Bridge Bent Retrofitted With Different Alternatives and write the review.

The main objective of this research was to assess the seismic vulnerability of typical pre-1975 WSDOT prestressed concrete multi-column bent bridges. Additional objectives included determining the influence of soil-structure-interaction on the bridge assessment and evaluating the effects of non-traditional retrofit schemes on the global response of the bridges. Overall this research highlighted the vulnerability of non-monolithic bridge decks and shear-dominating bridge columns in pre-1975 WSDOT prestressed concrete multi-column bent bridges as well as the importance of including soil-structure-interaction, calibrating the force/displacement characterization of the columns to experimental test data and detailed modeling of the bridges such as expansion joint/girder interaction. In the end, the seismic assessment of bridges is a cost/efficiency issue. Each bridge is different, therefore, investing in improved analyses up front will enable an efficient use of the limited funds for bridge improvement, resulting in a significant savings overall.
Many bridges in North Eastern region of U.S. were designed prior to the adoption of the AASHTO LRFD Guide Specifications for seismic design and may be vulnerable to damage during an earthquake event. This study evaluates the seismic vulnerabilities of those bridges and the structural factors that could affect their performance during a seismic event. The effects of load demands and age deteriorations were also studied. Aging of certain bridge components such as bearings, columns, and bent caps can affect the capacity and demands of these components and accordingly might affect the global behavior and capacity of a bridge during an earthquake event. The concept of fragility curves was studied as a potential tool for evaluating the seismic performance of new bridges, existing bridges and retrofitted bridges for various bridge types subjected to different peak ground acceleration levels. Fragility curves represent the probability of a structure to experience damage levels higher than specific damage state at different peak ground acceleration. Possible retrofit measures for various bridge components were reviewed, and analyzed for their effectiveness. These include superstructure restrainers, stoppers, shear keys, isolation bearings, bent cap strengthening and column jacketing. Existing research shows that the concept of fragility curves can be used to identify bridge vulnerability and level of damage. They can also be used to identify performance and level of damage of various retrofit measures. The effect of aging of certain components such as stiffening and locking of bearings and corrosion of confining steel in columns need to be included when evaluating bridge load demands and capacities. Different types of concrete bridges (typical in North Eastern United States) were analyzed using elastic response spectrum and nonlinear push-over analysis for low, medium-to-high, and high seismicity levels. The effects of pier configuration, continuity between the superstructure and the substructure, and the number of spans were investigated. Analysis results showed that in the longitudinal direction, the displacement demand increased for multi-column bents compared to single-column bents. However, the overall D/C ratio dropped in both transverse and longitudinal directions. The results also showed that in the longitudinal direction the benefit of having multi-column bent over single-column bents in integral bridges is dependent on the seismicity levels. The D/C (demand/capacity) ratio for single column bents in the longitudinal direction was much lower for integral (monolithic) bents compared to non-integral bents. In the transverse directions, the difference in the D/C ratio was not significant. For multi-column bents, the percent change by having integral bents over non-integral bents was dependent on the seismicity levels. For high seismicity zones, the benefits of having Integral bents becomes more significant. This investigation presents guidance on incorporating the effects of aging and retrofitting in the finite element modeling of bridges subjected to various levels of earthquake ground motions.
Bridges play a key role in the transportation sector while serving as lifelines for the economy and safety of communities. The need for resilient bridges is especially important following natural disasters, where they serve as evacuation, aid, and supply routes to an affected area. Much of the earthquake engineering community is interested in improving the resiliency of bridges, and many contributions to the field have been made in the past decades, where a shift towards performancebased design (PBD) practices is underway. While the Canadian Highway Bridge Design Code (CHBDC) has implemented PBD as a requirement for the seismic design of lifeline and major route bridges, the nature of PBD techniques translate to a design process that is not universally compatible for all scenarios and hazards. Therefore, there is great benefit to be realised in the development of PBD guidelines for mainshock-aftershock seismic sequences for scenarios in which the chance to assess and repair a bridge is not possible following a recent mainshock. This research analytically explored a parameterized set of 20 reinforced concrete bridge piers which share several geometrical and material properties with typical bridge bents that support many Canadian bridges. Of those piers, half are designed using current PBD guidelines provided in the 2019 edition of the CHBDC, whereas the remaining half are designed with insufficient transverse reinforcement commonly found in the bridges designed pre-2000. To support this study, a nonlinear fiber-based modelling approach with a proposed material strength degradation scheme is developed using the OpenSEES finite element analysis software. A multiple conditional mean spectra (CMS) approach is used to select a suite of 50 mainshock-aftershock ground motion records for the selected site in Vancouver, British Columbia, which consist of crustal, inslab, and interface earthquakes that commonly occur in areas near the Cascadia Subduction zone. Nonlinear time history analysis is performed for mainshock-only and mainshock-aftershock excitations, and static pushover analysis is also performed in lateral and axial directions for the intact columns, as well as in their respective post-MS and post-AS damaged states. Using the resulting data, a framework for post-earthquake seismic capacity estimation of the bridge piers is developed using machine learning regression methods, where several candidate models are tuned using an exhaustive grid search algorithm approach and k-fold crossvalidation. The tuned models are fitted and evaluated against a test set of data to determine a single best performing model using a multiple scorer performance index as the metric. The resulting performance index suggests that the decision tree model is the most suitable regressor for capacity estimation due to this model exhibiting the highest accuracy as well as lowest residual error. Moreover, this study also assessed the fragility of the bridge piers subjected to mainshock-only and mainshock-aftershock earthquakes. Probabilistic seismic demand models (PSDMs) are derived for the columns designed using current PBD guidelines (PBD-compliant) to evaluate whether the current PBD criteria is sufficient for resisting aftershock effects. Additional PSDMs are generated for the columns with inadequate transverse reinforcement (PBD-deficient) to assess aftershock vulnerability of older bridges. The developed fragility curves indicate an increased fragility of all bridge piers for all damage levels. The findings indicate that adequate aftershock performance is achieved for bridge piers designed to current (2019) CHBDC extensive damage level criteria. Furthermore, it is suggested that minimal damage performance criteria need to be developed for aftershock effects, and the repairable damage level be reintroduced for major route bridges.