Download Free Seismic Design Optimization Of Steel Structures Using Genetic Algorithm Book in PDF and EPUB Free Download. You can read online Seismic Design Optimization Of Steel Structures Using Genetic Algorithm and write the review.

Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.
This book provides a discussion of the general impact of WTO membership on both sides of the Taiwan Strait, and addresses the political and economic impact on cross-Strait relations of common membership. The book begins with an introduction which analyzes the state of cross-Strait economic and political relations on the eve of dual accession to the WTO and briefly introduces the chapters which follow. The first chapter discusses the concessions made by both sides in their accession agreements and is followed by two chapters which describe the manner in which the Taiwan economy was reformed to achieve compliance as well as the specific, restrictive trade regime that was put into place to manage mainland trade. The next two chapters deal with the implications of that restrictive trade regime for the Taiwan economy in Asia and with the nature of the interactions between the two sides within the WTO. The final four chapters of the volume examine the impact of membership on four sectors of the economy: finance; agriculture; electronics and automobiles. There is a post-script which briefly covers developments since the chapters were completed.
The Genetic Algorithm (GA) was selected for application to design optimization of braced steel moment resisting frame (MRF) structures. A MATLAB program was developed that uses GA for diagonal braces optimization of two-dimensional three-story and nine-story frame structures. The soGA program was used to find an optimal solution from a large search space with different design variables in a reasonable length of time with a fully automated process. Established computational models can simulate the nonlinear behavior of 3- and 9-story steel MRFs under different earthquakes by using OpenSees software. Plastic hinges and Bilin material were used to simulate the plastic stage of Reduced Beam Section (RBS) during nonlinear time history analyses. The final design obtained by the soGA program was compared to the base structures without braces, in terms of maximum story drift ratio and maximum floor acceleration during nonlinear time history seismic analyses.
"Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.
The two volumes of this book collect high-quality peer-reviewed research papers presented in the International Conference on ICT for Sustainable Development (ICT4SD 2015) held at Ahmedabad, India during 3 – 4 July 2015. The book discusses all areas of Information and Communication Technologies and its applications in field for engineering and management. The main focus of the volumes are on applications of ICT for Infrastructure, e-Governance, and contemporary technologies advancements on Data Mining, Security, Computer Graphics, etc. The objective of this International Conference is to provide an opportunity for the researchers, academicians, industry persons and students to interact and exchange ideas, experience and expertise in the current trend and strategies for Information and Communication Technologies.
Various structures, such as buildings, bridges, and paved roads play an important role in our lives. However, these construction projects require large expenditures. Designing infrastructure cost-efficiently while satisfying all necessary design constraints is one of the most important and difficult tasks for a structural engineer. Traditionally, mathematical gradient-based optimization techniques have been applied to these designs. However, these gradient-based methods are not suitable for discrete design variables such as factory-made cross sectional area of structural members. Recently, researchers have turned their interest to phenomenon-mimicking optimization techniques because these techniques have proved able to efficiently handle discrete design variables. One of these techniques is harmony search, an algorithm developed from musical improvisation that has been applied to various structural design problems and has demonstrated cost-savings. This book gathers all the latest developments relating to the application of the harmony search algorithm in the structural design field in order for readers to efficiently understand the full spectrum of the algorithm’s potential and to easily apply the algorithm to their own structural problems. This book contains six chapters with the following subjects: standard harmony search algorithm and its applications by Lee; standard harmony search algorithm for steel frame design by Degertekin; adaptive harmony search algorithm and its applications by Saka and Hasançebi; harmony particle swarm algorithm and its applications by Li and Liu; hybrid algorithm of harmony search, particle swarm & ant colony for structural design by Kaveh and Talatahari; and parameter calibration of viscoelastic and damage functions by Mun and Geem.
This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
A typical engineering task during the development of any system is, among others, to improve its performance in terms of cost and response. Improvements can be achieved either by simply using design rules based on the experience or in an automated way by using optimization methods that lead to optimum designs. Design Optimization of Active and Passive Structural Control Systems includes Earthquake Engineering and Tuned Mass Damper research topics into a volume taking advantage of the connecting link between them, which is optimization. This is a publication addressing the design optimization of active and passive control systems. This title is perfect for engineers, professionals, professors, and students alike, providing cutting edge research and applications.
This book focuses on metaheuristic methods and its applications to real-world problems in Engineering. The first part describes some key metaheuristic methods, such as Bat Algorithms, Particle Swarm Optimization, Differential Evolution, and Particle Collision Algorithms. Improved versions of these methods and strategies for parameter tuning are also presented, both of which are essential for the practical use of these important computational tools. The second part then applies metaheuristics to problems, mainly in Civil, Mechanical, Chemical, Electrical, and Nuclear Engineering. Other methods, such as the Flower Pollination Algorithm, Symbiotic Organisms Search, Cross-Entropy Algorithm, Artificial Bee Colonies, Population-Based Incremental Learning, Cuckoo Search, and Genetic Algorithms, are also presented. The book is rounded out by recently developed strategies, or hybrid improved versions of existing methods, such as the Lightning Optimization Algorithm, Differential Evolution with Particle Collisions, and Ant Colony Optimization with Dispersion – state-of-the-art approaches for the application of computational intelligence to engineering problems. The wide variety of methods and applications, as well as the original results to problems of practical engineering interest, represent the primary differentiation and distinctive quality of this book. Furthermore, it gathers contributions by authors from four countries – some of which are the original proponents of the methods presented – and 18 research centers around the globe.