Download Free Seismic Assessment And Retrofit Of Existing Multi Column Bent Bridges Book in PDF and EPUB Free Download. You can read online Seismic Assessment And Retrofit Of Existing Multi Column Bent Bridges and write the review.

The main objective of this research was to assess the seismic vulnerability of typical pre-1975 WSDOT prestressed concrete multi-column bent bridges. Additional objectives included determining the influence of soil-structure-interaction on the bridge assessment and evaluating the effects of non-traditional retrofit schemes on the global response of the bridges. Overall this research highlighted the vulnerability of non-monolithic bridge decks and shear-dominating bridge columns in pre-1975 WSDOT prestressed concrete multi-column bent bridges as well as the importance of including soil-structure-interaction, calibrating the force/displacement characterization of the columns to experimental test data and detailed modeling of the bridges such as expansion joint/girder interaction. In the end, the seismic assessment of bridges is a cost/efficiency issue. Each bridge is different, therefore, investing in improved analyses up front will enable an efficient use of the limited funds for bridge improvement, resulting in a significant savings overall.
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.
The Loma Prieta earthquake struck the San Francisco area on October 17, 1989, causing 63 deaths and $10 billion worth of damage. This book reviews existing research on the Loma Prieta quake and draws from it practical lessons that could be applied to other earthquake-prone areas of the country. The volume contains seven keynote papers presented at a symposium on the earthquake and includes an overview written by the committee offering recommendations to improve seismic safety and earthquake awareness in parts of the country susceptible to earthquakes.
Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.
Bridge Maintenance, Safety, Management and Life-Cycle Optimization contains the lectures and papers presented at IABMAS 2010, the Fifth International Conference of the International Association for Bridge Maintenance and Safety (IABMAS), held in Philadelphia, Pennsylvania, USA from July 11 through 15, 2010.All major aspects of bridge maintenance, s
Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection provides detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject, and also highlights bridges from around the world. This second edition of the bestselling Bridge Engineering Handbook covers virtually all the information an engineer would need to know about any type of bridge-from planning to construction to maintenance. It contains more than 2,500 tables, charts, and illustrations in a practical, ready-to-use format. An abundance of worked-out examples gives readers numerous practical step-by-step design procedures. Special attention is given to rehabilitation, retrofit, and maintenance. Coverage also includes seismic design and building materials. Thoroughly revised and updated, this second edition contains 26 new chapters.