Download Free Seismic Applications Of Acoustic Reciprocity Book in PDF and EPUB Free Download. You can read online Seismic Applications Of Acoustic Reciprocity and write the review.

The seismic applications of the reciprocity theorem developed in this book are partly based on lecture notes and publications from Professor de Hoop. Every student Professor de Hoop has taught knows the egg-shaped figure (affectionately known as "de Hoop's egg") that plays such an important role in his theoretical description of acoustic, electromagnetic and elastodynamic wave phenomena.On the one hand this figure represents the domain for the application of a reciprocity theorem in the analysis of a wavefield and on the other hand it symbolizes the power of a consistent wavefield description of this theorem.The roots of the reciprocity theorem lie in Green's theorem for Laplace's equation and Helmholtz's extension to the wave equation. In 1894, J.W. Strutt, who later became Lord Rayleigh, introduced in his book The Theory of Sound this extension under the name of Helmholtz's theorem. Nowadays it is known as Rayleigh's reciprocity theorem.Progress in seismic data processing requires the knowledge of all the theoretical aspects of the acoustic wave theory. The reciprocity theorem was chosen as the central theme of this book as it constitutes the fundaments of the seismic wave theory. In essence, two states are distinguished in this theorem. These can be completely different, although sharing the same time-invariant domain of application, and they are related via an interaction quantity. The particular choice of the two states determines the acoustic application, in turn making it possible to formulate the seismic experiment in terms of a geological system response to a known source function.In linear system theory, it is well known that the response to a known input function can be written as an integral representation where the impulse response acts as a kernel and operates on the input function. Due to the temporal invariance of the system, this integral representation is of the convolution type. In seismics, the temporal behaviour of the system is dealt with in a similar fashion; however the spatial interaction needs a different approach. The reciprocity theorem handles this interaction by identifying one state with the spatial impulse function, also known as the Green's function, while the other state is connected with the actual source distribution. In general, the resulting integral representation is not a spatial convolution. Moreover, the systematic use of the reciprocity theorem leads to a hierarchical description of the seismic experiment in terms of increasing complexity. Also from an educational point of view this approach provides a hierarchy and the student learns to break down the seismic problem into constituent partial solutions.This book should contribute to the understanding that the reciprocity theorem is a powerful tool in the analysis of the seismic experiment.
Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color
A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.
Mathematical methods are essential tools for all physical scientists. This book provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students across the physical sciences. In contrast to more traditional textbooks, all the material is presented in the form of exercises. Within these exercises, basic mathematical theory and its applications in the physical sciences are well integrated. In this way, the mathematical insights that readers acquire are driven by their physical-science insight. This third edition has been completely revised: new material has been added to most chapters, and two completely new chapters on probability and statistics and on inverse problems have been added. This guided tour of mathematical techniques is instructive, applied, and fun. This book is targeted for all students of the physical sciences. It can serve as a stand-alone text, or as a source of exercises and examples to complement other textbooks.
Written as a reference for geophysicists, seismic surveyors and engineers in the mining, hydrocarbon and water industries this book attempts to recommend solutions to problems commonly experienced in the field. It recommends careful planning and executions of operations at this stage of resources exploration, results in large cost and time saving.
Contains 131 papers presented at the September 1995 symposium. Arrangement is in sections on the mathematics and physics of acoustical imaging, novel approaches in biomedical imaging, tissue characterization, flow imaging, transducers and arrays, imaging systems and techniques, underwater and indust
This volume contains 131 of the papers presented at the 22nd International Symposium on Acoustical Imaging. This meeting, which was held for the first time in Florence, Italy, on September 3-6, 1995, allowed an intense and friendly exchange of ideas between over 150 researchers from 26 different countries of Europe (70%), America (20%), Asia and Australia (10%). The Symposium started on Sunday, September 3, with the opening Session held in the magnificent 'Salone dei 500' in Palazzo Vecchio; this included invited talks by Peter WeHs and Hua Lee, who reviewed the State of the Art in Acoustical Imaging research. One hundred and forty papers, selected from the nearly 200 submitted Abstracts, were presented in 11 non-parallel oral Sessions and one Poster Session. This year a 'Best Poster' award was introduced, which was won by V. Miette, M. Fink and F. Wu. Also, a special session on Acoustical Microscopy was organized by Walter Arnold, in which invited speakers Ioie Iones, Oleg Kolosov, Andrew Briggs and Ute Rabe reviewed the capabilities of this em erging topic.
Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.
Including more than 70 papers, this invaluable source for researchers and students contains an editors' introduction with extensive references and chapters on seismic interferometry without equations, highlights of the history of seismic interferometry from 1968 until 2003, and offers a detailed overview of the rapid developments since 2004.