Download Free Seismic Anisotropy Analysis With Muir Dellinger Parameters Book in PDF and EPUB Free Download. You can read online Seismic Anisotropy Analysis With Muir Dellinger Parameters and write the review.

Seismic anisotropy, defined as the dependency of seismic-wave velocities on propagation direction, is an important factor in seismic data analysis. Neglecting anisotropy can lead to significant errors in the subsurface images. Even after decades of considerable research efforts, the topic of anisotropy remains at the center of attention of the research community. In this dissertation, I address the fundamental problem of choosing parameterization to characterize the effects of seismic anisotropy and propose an alternative approach based on the Muir-Dellinger (MD) parameters. I first give their definitions and discuss their properties with respect to the classic qP-wave phase velocity in transversely isotropic (TI) media in the second chapter. I show that, when expressed in terms of MD parameters, the exact expression of phase velocity in this case is controlled by the elliptical background and two anelliptic parameters (q1 and q3) defined as the curvature of the qP-wave phase velocity measured along the symmetry axis and its orthogonal. The wide range of possible values for the vertical shear-wave velocity (vs0) expressed under the conventional Thomsen parameterization translates to a considerably narrower range of the slope in the nearly linear dependence between q1 and q3. This discovery suggests a possibility of using such a relationship to characterize the complete stiffness tensor, infer more information about the subsurface directly from qP kinematics, and provide a physical basis for reducing the number of parameters in qP-wave analysis. Based on various experimental measurements of stiffness coefficients reported in the literature, I relate such properties in shales, sandstones, and carbonates with corresponding values of slope. I further investigate this empirical linear relationship in the third chapter and show that it can also gives additional rock physics implications about the type of pore fluids. I provide some supportive evidence of its reality from self-consistent rock physics modeling and Backus averaging for shale samples. In addition, I find that both the 2D MD parameterization and its 3D extension, suitable for studies of qP waves in orthorhombic media, also provide a convenient foundation for the parameter estimation process. I carry out a detailed study on the sensitivity of MD parameters to qP-wave kinematics in comparison with other known anisotropic parameterization schemes in the fourth chapter. In the last chapter, using the MD parameters, I propose novel analytical approximations for qP-wave phase and group velocities in 2D TI and 3D orthorhombic media. The novel approximations are highly accurate and possess an advantage of having similar functional form with reciprocal coefficients, which adds practical convenience to considering both phase (wave) and group (ray) velocities. Finally, I discuss known limitations of the MD parameterization and suggest possible future research topics.
Provides essential background on anisotropic wave propagation, introduces efficient notation for transversely isotropic (TI) and orthorhombic media, and identifies the key anisotropy parameters for imaging and amplitude analysis. Particular attention is given to moveout analysis and P-wave time-domain processing for VTI and TTI.
Understanding Seismic Anisotropy in Exploration and Exploitation (second edition) by Leon Thomsen is designed to show you how to recognize the effects of anisotropy in your data and to provide you with the intuitive concepts that you will need to analyze it. Since its original publication in 2002, seismic anisotropy has become a mainstream topic in exploration geophysics. With the emergence of the shale resource play, the issues of seismic anisotropy have become central, because all shales are seismically anisotropic, whether fractured or not. With the advent of wide-azimuth surveying, it has become apparent that most rocks are azimuthally anisotropic, with P-wave velocities and P-AVO gradients varying with source-receiver azimuth. What this means is that analysis of such data with narrow-azimuth algorithms and concepts will necessarily fail to get the most out of this expensively acquired data. The issues include not only seismic wave propagation, but also seismic rock physics. Isotropic concepts including velocity, Young’s modulus, and Poisson’s ratio have no place in the discussion of anisotropic rocks, unless qualified in some directional way (e.g., vertical Young’s modulus). Likewise, fluid substitution in anisotropic rocks, using the isotropic Biot/Gassmann formula, leads to formal errors, because the bulk modulus does not appear, in a natural way, within the anisotropic P-wave velocity. This updated edition is now current as of 2014.
Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media
The vertical seismic profile, acquired with an array of 3C receivers and either a single source or several arranged in a multi-component configuration, provides an ideal high fidelity calibration tool for seismic projects involved in the application of seismic anisotropy. This book catalogues the majority of specialized tools necessary to work with P-P, P-S and S-S data from such VSP surveys at the acquisition design, processing and interpretation stages. In particular, it discusses 3C, 4C, 6C and 9C VSP, marine and land surveys with near and multiple offsets (walkways), azimuths (walkarounds) or a combination of both. These are considered for TIH or TIV flavours of seismic anisotropy arising from cracks, fractures, sedimentary layering, and shales. The anisotropic adaptation of familiar seismic methods for velocity analysis and inversion, reflected amplitude interpretation, are given together with more multi-component specific algorithms based upon the principles dictated by the vector convolutional model. Thus, multi-component methods are described that provide tests and compensation for source or receiver vector fidelity, tool rotation correction, layer stripping, near-surface correction, wavefield separation, and the Alford rotation with its variants. The work will be of interest to geophysicists involved in research or the application of seismic anisotropy using multi-component seismic.
This is a new edition of Ilya Tsvankin's reference volume on seismic anisotropy and application of anisotropic models in reflection seismology. It provides essential background information about anisotropic wave propagation, introduces efficient notation for transversely isotropic (TI) and orthorhombic media, and identifies the key anisotropy parameters for imaging and amplitude analysis. To gain insight into the influence of anisotropy on a wide range of seismic signatures, exact solutions are simplified in the weak-anisotropy approximation.
Takes readers on a path of discovery of rarely examined wave phenomena and their possible usage. Chapters begin by formulating a question, followed by explanations of what is exciting about it, where the mystery might lie, and what could be the potential value of answering the question.