Download Free Seeing The High Energy Universe With The Cherenkov Telescope Array Book in PDF and EPUB Free Download. You can read online Seeing The High Energy Universe With The Cherenkov Telescope Array and write the review.

This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
High energy gamma-ray photons are the prime probes of the relativistic or high-energy universe, populated by black holes, neutron stars, supernovae, quasars, and matter-antimatter annihilations. Through studying the gamma-ray sky, astrophysicists are able to better understand the formation and behavior of these exotic and energetic bodies. V
IceCube Observatory, a South Pole instrument making the first actual observations of high-energy neutrinos, has been called the “weirdest” of the seven wonders of modern astronomy by Scientific American. In The Telescope in the Ice, Mark Bowen tells the amazing story of the people who built the instrument and the science involved. Located near the U. S. Amundsen-Scott Research Station at the geographic South Pole, IceCube is unlike most telescopes in that it is not designed to detect light. It employs a cubic kilometer of diamond-clear ice, more than a mile beneath the surface, to detect an elementary particle known as the neutrino. In 2010, it detected the first extraterrestrial high-energy neutrinos and thus gave birth to a new field of astronomy. IceCube is also the largest particle physics detector ever built. Its scientific goals span not only astrophysics and cosmology but also pure particle physics. And since the neutrino is one of the strangest and least understood of the known elementary particles, this is fertile ground. Neutrino physics is perhaps the most active field in particle physics today, and IceCube is at the forefront. The Telescope in the Ice is, ultimately, a book about people and the thrill of the chase: the struggle to understand the neutrino and the pioneers and inventors of neutrino astronomy.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
It has been over 100 years since the presentation of the Theory of General Relativity by Albert Einstein, in its final formulation, to the Royal Prussian Academy of Sciences. To celebrate 100 years of general relativity, World Scientific publishes this volume with a dual goal: to assess the current status of the field of general relativity in broad terms, and discuss future directions. The volume thus consists of broad overviews summarizing major developments over the past decades and their perspective contributions.
This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.
The H.E.S.S. (High Energy Spectroscopic System) experiment is an array of five Cherenkov telescopes that observe the sky in gamma-rays from about 100 GeV up to several ten TeV.Gamma rays are produced in violent non-thermal phenomena in the Universe in the neighborhood of pulsars, supernovae, black holes, ..., and could also be produced by the annihilation of dark matter particles.Numerous cosmological and astrophysical probes suggest that 85% of the total matter budget in the Universe is of unknown origin. This component of matter known as dark matter is non baryonic and could consist of yet undiscovered particles which privileged candidates are arguably massive particles with electroweak couplings with ordinary matter (WIMPs).Dark matter particles may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are photons which detection at high energy with ground-based Cherenkov telescopes could bring unique information on the nature of the dark matter.H.E.S.S. observes dark-matter-dense regions of the sky such as the Galactic Center and dwarf galaxy satellites of the Milky Way. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars is performed.10 years of observations of the Galactic Center with the four-telescope H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The search for dark matter annihilation signals towards these targets provided the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies. The potential of dark matter detection with the upcoming Cherenkov Telescope Array (CTA) towards the inner Galactic halo are studied. They may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are high energy photons. The detection of these photons with ground-based Cherenkov telescopes may reveal the nature of the dark matter. H.E.S.S. have observed some dark-matter-dense regions of the sky likethe Galactic Center and dwarf galaxies satellites of the Milky Way. In this work 10 years of observations of the Galactic Center with the four-telescopes H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The searches for dark matter annihilation signals towards these targets produced the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies.Perspectives of dark matter detection with the future array CTA (Cherenkov Telescope Array) towards the inner Galactic halo are also discussed. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars complements the dark matter searches.