Download Free Security Of Biochip Cyberphysical Systems Book in PDF and EPUB Free Download. You can read online Security Of Biochip Cyberphysical Systems and write the review.

This book provides readers with a valuable guide to understanding security and the interplay of computer science, microfluidics, and biochemistry in a biochip cyberphysical system (CPS). The authors uncover new, potential threat and trust-issues to address, as this emerging technology is poised to be adapted at a large scale. Readers will learn how to secure biochip CPS by leveraging the available resources in different application contexts, as well as how to ensure intellectual property (IP) is protected against theft and counterfeits. This book enables secure biochip CPS design by helping bridge the knowledge gap at the intersection of the multi-disciplinary technology that drives biochip CPS.
This book describes novel hardware security and microfluidic biochip design methodologies to protect against tampering attacks in cyberphysical microfluidic biochips (CPMBs). It also provides a general overview of this nascent area of research, which will prove to be a vital resource for practitioners in the field.This book shows how hardware-based countermeasures and design innovations can be a simple and effective last line of defense, demonstrating that it is no longer justifiable to ignore security and trust in the design phase of biochips.
Cyber Physical System (CPS) is an integration of computation, networking, and physical processes: the combination of several systems ofdifferent nature whose main purpose is tocontrol a physical process and, through feedback, adapt itself to new conditions, in real time.Cyber Physical System: Concepts and Applications includes an in-depth coverage of the latestmodels and theories that unify perspectives. It expresses the interacting dynamics of the computational and physical components of asystem in a dynamic environment. Covers automatic application of software countermeasures against physical attacks and impact of cyber physical system on industry 4.0 Explains how formal models provide mathematical abstractions to manage the complexity of a system design Offers a rigorous and comprehensive introduction to the principles of design,specification, modelling, and analysis of cyber physicalsystems Discusses the multiple domains where Cyber Physical system has a vital impact and provides knowledge about different models thatprovide mathematical abstractions tomanage the complexity of a system design Provides the rapidly expanding field of cyber-physical systems with a Long-needed foundational text by an established authority This book is primarily aimed at advanced undergraduates, graduates of computer science. Engineers will also find this book useful.
This book highlights research and survey articles dedicated to big data techniques for cyber-physical system (CPS), which addresses the close interactions and feedback controls between cyber components and physical components. The book first discusses some fundamental big data problems and solutions in large scale distributed CPSs. The book then addresses the design and control challenges in multiple CPS domains such as vehicular system, smart city, smart building, and digital microfluidic biochips. This book also presents the recent advances and trends in the maritime simulation system and the flood defence system.
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
With a business baseline focused on the impact of embedded systems in the years ahead, the book investigates the Security, Privacy and Dependability (SPD) requirements raised from existing and future IoT, Cyber-Physical and M2M systems. It proposes a new approach to embedded systems SPD, the SHIELD philosophy, that relies on an overlay approach to SPD, on a methodology for composable SPD, on the use of semantics, and on the design of embedded systems with built-in SPD. The book explores new ground and illustrates the development of approximately forty prototypes capable of managing and enhancing SPD, including secure boot, trusted execution environments, adaptable radio interfaces, and different implementations of the middleware for measuring and composing SPD.
A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.
Security systems have become an integral part of the building and large complex setups, and intervention of the computational intelligence (CI) paradigm plays an important role in security system architecture. This book covers both theoretical contributions and practical applications in security system design by applying the Internet of Things (IoT) and CI. It further explains the application of IoT in the design of modern security systems and how IoT blended with computational intel- ligence can make any security system improved and realizable. Key features: Focuses on the computational intelligence techniques of security system design Covers applications and algorithms of discussed computational intelligence techniques Includes convergence-based and enterprise integrated security systems with their applications Explains emerging laws, policies, and tools affecting the landscape of cyber security Discusses application of sensors toward the design of security systems This book will be useful for graduate students and researchers in electrical, computer engineering, security system design and engineering.
This book features extended versions of selected papers that were presented and discussed at the 6th International Doctoral Symposium on Applied Computation and Security Systems (ACSS 2019) held in Kolkata, India on 12–13 March, 2019. Organized by the Departments of Computer Science & Engineering and A.K. Choudhury School of Information Technology, both from the University of Calcutta, the symposium’s international partners were Ca' Foscari University of Venice, Italy and Bialystok University of Technology, Poland. The chapters cover topics such as biometrics, image processing, pattern recognition, algorithms, cloud computing, wireless sensor networks and security systems, reflecting the various symposium sessions.
The research community lacks both the capability to explain the effectiveness of existing techniques and the metrics to predict the security properties and vulnerabilities of the next generation of nano-devices and systems. This book provides in-depth viewpoints on security issues and explains how nano devices and their unique properties can address the opportunities and challenges of the security community, manufacturers, system integrators, and end users. This book elevates security as a fundamental design parameter, transforming the way new nano-devices are developed. Part 1 focuses on nano devices and building security primitives. Part 2 focuses on emerging technologies and integrations.