Download Free Securing The Modern Electric Grid From Physical And Cyber Attacks Book in PDF and EPUB Free Download. You can read online Securing The Modern Electric Grid From Physical And Cyber Attacks and write the review.

The Smart Grid has the potential to revolutionize electricity delivery systems, and the security of its infrastructure is a vital concern not only for cyber-security practitioners, engineers, policy makers, and utility executives, but also for the media and consumers. Smart Grid Security: An End-to-End View of Security in the New Electrical Grid explores the important techniques, challenges, and forces that will shape how we achieve a secure twenty-first century electric grid. Includes a Foreword by Michael Assante, President and CEO, National Board of Information Security Examiners Following an overview of the components of the Smart Grid, the book delves into the evolution of security standards and regulations and examines ways in which the Smart Grid might be regulated. The authors discuss the technical details about how metering technology is being implemented and the likely threats and vulnerabilities that utilities will face. They address the home area network (HAN) and examine distribution and transmission—the foundation for the delivery of electricity, along with distributed generation, micro-grids, and operations. The book explores future concepts—such as energy storage and the use of plug-in electric vehicles (PEVs)—in addition to the concomitant risk for fraud and manipulation with stored energy. Consumer-related issues are discussed as they pertain to emerging ways of receiving and generating energy. The book examines dysfunctions ranging from inadvertent outages to cyber-attack and presents recommendations on how to respond to these incidents. It concludes with speculation of future cyber-security challenges and discusses new ways that the grid can be defended, such as better key management and protection. Written in a style rigorous enough for the practitioner yet accessible to a broad audience, this comprehensive volume covers a topic that is becoming more critical to industry and consumers everywhere.
Many people think of the Smart Grid as a power distribution group built on advanced smart metering—but that's just one aspect of a much larger and more complex system. The "Smart Grid" requires new technologies throughout energy generation, transmission and distribution, and even the homes and businesses being served by the grid. This also represents new information paths between these new systems and services, all of which represents risk, requiring a more thorough approach to where and how cyber security controls are implemented. This insight provides a detailed architecture of the entire Smart Grid, with recommended cyber security measures for everything from the supply chain to the consumer. - Discover the potential of the Smart Grid - Learn in depth about its systems - See its vulnerabilities and how best to protect it
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
Securing the Smart Grid discusses the features of the smart grid, particularly its strengths and weaknesses, to better understand threats and attacks, and to prevent insecure deployments of smart grid technologies. A smart grid is a modernized electric grid that uses information and communications technology to be able to process information, such as the behaviors of suppliers and consumers. The book discusses different infrastructures in a smart grid, such as the automatic metering infrastructure (AMI). It also discusses the controls that consumers, device manufacturers, and utility companies can use to minimize the risk associated with the smart grid. It explains the smart grid components in detail so readers can understand how the confidentiality, integrity, and availability of these components can be secured or compromised. This book will be a valuable reference for readers who secure the networks of smart grid deployments, as well as consumers who use smart grid devices. - Details how old and new hacking techniques can be used against the grid and how to defend against them - Discusses current security initiatives and how they fall short of what is needed - Find out how hackers can use the new infrastructure against itself
The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regional or national power grids. It is essential that security measures are put in place to ensure that the Smart Grid does not succumb to these threats and to safeguard this critical infrastructure at all times. Dr. Florian Skopik is one of the leading researchers in Smart Grid security, having organized and led research consortia and panel discussions in this field. Smart Grid Security will provide the first truly holistic view of leading edge Smart Grid security research. This book does not focus on vendor-specific solutions, instead providing a complete presentation of forward-looking research in all areas of Smart Grid security. The book will enable practitioners to learn about upcoming trends, scientists to share new directions in research, and government and industry decision-makers to prepare for major strategic decisions regarding implementation of Smart Grid technology. - Presents the most current and leading edge research on Smart Grid security from a holistic standpoint, featuring a panel of top experts in the field. - Includes coverage of risk management, operational security, and secure development of the Smart Grid. - Covers key technical topics, including threat types and attack vectors, threat case studies, smart metering, smart home, e- mobility, smart buildings, DERs, demand response management, distribution grid operators, transmission grid operators, virtual power plants, resilient architectures, communications protocols and encryption, as well as physical security.
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Countering Cyber Sabotage: Introducing Consequence-Driven, Cyber-Informed Engineering (CCE) introduces a new methodology to help critical infrastructure owners, operators and their security practitioners make demonstrable improvements in securing their most important functions and processes. Current best practice approaches to cyber defense struggle to stop targeted attackers from creating potentially catastrophic results. From a national security perspective, it is not just the damage to the military, the economy, or essential critical infrastructure companies that is a concern. It is the cumulative, downstream effects from potential regional blackouts, military mission kills, transportation stoppages, water delivery or treatment issues, and so on. CCE is a validation that engineering first principles can be applied to the most important cybersecurity challenges and in so doing, protect organizations in ways current approaches do not. The most pressing threat is cyber-enabled sabotage, and CCE begins with the assumption that well-resourced, adaptive adversaries are already in and have been for some time, undetected and perhaps undetectable. Chapter 1 recaps the current and near-future states of digital technologies in critical infrastructure and the implications of our near-total dependence on them. Chapters 2 and 3 describe the origins of the methodology and set the stage for the more in-depth examination that follows. Chapter 4 describes how to prepare for an engagement, and chapters 5-8 address each of the four phases. The CCE phase chapters take the reader on a more granular walkthrough of the methodology with examples from the field, phase objectives, and the steps to take in each phase. Concluding chapter 9 covers training options and looks towards a future where these concepts are scaled more broadly.
The main objective of this book is to introduce cyber security using modern technologies such as Artificial Intelligence, Quantum Cryptography, and Blockchain. This book provides in-depth coverage of important concepts related to cyber security. Beginning with an introduction to Quantum Computing, Post-Quantum Digital Signatures, and Artificial Intelligence for cyber security of modern networks and covering various cyber-attacks and the defense measures, strategies, and techniques that need to be followed to combat them, this book goes on to explore several crucial topics, such as security of advanced metering infrastructure in smart grids, key management protocols, network forensics, intrusion detection using machine learning, cloud computing security risk assessment models and frameworks, cyber-physical energy systems security, a biometric random key generator using deep neural network and encrypted network traffic classification. In addition, this book provides new techniques to handle modern threats with more intelligence. It also includes some modern techniques for cyber security, such as blockchain for modern security, quantum cryptography, and forensic tools. Also, it provides a comprehensive survey of cutting-edge research on the cyber security of modern networks, giving the reader a general overview of the field. It also provides interdisciplinary solutions to protect modern networks from any type of attack or manipulation. The new protocols discussed in this book thoroughly examine the constraints of networks, including computation, communication, and storage cost constraints, and verifies the protocols both theoretically and experimentally. Written in a clear and comprehensive manner, this book would prove extremely helpful to readers. This unique and comprehensive solution for the cyber security of modern networks will greatly benefit researchers, graduate students, and engineers in the fields of cryptography and network security.
Wide area monitoring, protection and control systems (WAMPACs) have been recognized as the most promising enabling technologies to meet challenges of modern electric power transmission systems, where reliability, economics, environmental and other social objectives must be balanced to optimize the grid assets and satisfy growing electrical demand. To this aim WAMPAC requires precise phasor and frequency information, which are acquired by deploying multiple time synchronized sensors, known as Phasor Measurement Units (PMUs), providing precise synchronized information about voltage and current phasors, frequency and rate-of-change-of-frequency.