Download Free Securing Ip Mobility Management For Vehicular Ad Hoc Networks Book in PDF and EPUB Free Download. You can read online Securing Ip Mobility Management For Vehicular Ad Hoc Networks and write the review.

The proliferation of Intelligent Transportation Systems (ITSs) applications, such as Internet access and Infotainment, highlights the requirements for improving the underlying mobility management protocols for Vehicular Ad Hoc Networks (VANETs). Mobility management protocols in VANETs are envisioned to support mobile nodes (MNs), i.e., vehicles, with seamless communications, in which service continuity is guaranteed while vehicles are roaming through different RoadSide Units (RSUs) with heterogeneous wireless technologies. Due to its standardization and widely deployment, IP mobility (also called Mobile IP (MIP)) is the most popular mobility management protocol used for mobile networks including VANETs. In addition, because of the diversity of possible applications, the Internet Engineering Task Force (IETF) issues many MIP's standardizations, such as MIPv6 and NEMO for global mobility, and Proxy MIP (PMIPv6) for localized mobility. However, many challenges have been posed for integrating IP mobility with VANETs, including the vehicle's high speeds, multi-hop communications, scalability, and efficiency. From a security perspective, we observe three main challenges: 1) each vehicle's anonymity and location privacy, 2) authenticating vehicles in multi-hop communications, and 3) physical-layer location privacy. In transmitting mobile IPv6 binding update signaling messages, the mobile node's Home Address (HoA) and Care-of Address (CoA) are transmitted as plain-text, hence they can be revealed by other network entities and attackers. The mobile node's HoA and CoA represent its identity and its current location, respectively, therefore revealing an MN's HoA means breaking its anonymity while revealing an MN's CoA means breaking its location privacy. On one hand, some existing anonymity and location privacy schemes require intensive computations, which means they cannot be used in such time-restricted seamless communications. On the other hand, some schemes only achieve seamless communication through low anonymity and location privacy levels. Therefore, the trade-off between the network performance, on one side, and the MN's anonymity and location privacy, on the other side, makes preservation of privacy a challenging issue. In addition, for PMIPv6 to provide IP mobility in an infrastructure-connected multi-hop VANET, an MN uses a relay node (RN) for communicating with its Mobile Access Gateway (MAG). Therefore, a mutual authentication between the MN and RN is required to thwart authentication attacks early in such scenarios. Furthermore, for a NEMO-based VANET infrastructure, which is used in public hotspots installed inside moving vehicles, protecting physical-layer location privacy is a prerequisite for achieving privacy in upper-layers such as the IP-layer. Due to the open nature of the wireless environment, a physical-layer attacker can easily localize users by employing signals transmitted from these users. In this dissertation, we address those security challenges by proposing three security schemes to be employed for different mobility management scenarios in VANETs, namely, the MIPv6, PMIPv6, and Network Mobility (NEMO) protocols.
This brief presents the challenges and solutions for VANETs’ security and privacy problems occurring in mobility management protocols including Mobile IPv6 (MIPv6), Proxy MIPv6 (PMIPv6), and Network Mobility (NEMO). The authors give an overview of the concept of the vehicular IP-address configurations as the prerequisite step to achieve mobility management for VANETs, and review the current security and privacy schemes applied in the three mobility management protocols. Throughout the brief, the authors propose new schemes and protocols to increase the security of IP addresses within VANETs including an anonymous and location privacy-preserving scheme for the MIPv6 protocol, a mutual authentication scheme that thwarts authentication attacks, and a fake point-cluster based scheme to prevent attackers from localizing users inside NEMO-based VANET hotspots. The brief concludes with future research directions. Professionals and researchers will find the analysis and new privacy schemes outlined in this brief a valuable addition to the literature on VANET management.
This book contains proceedings of the International Conference on Advances in Computing, Control and Communication Technology (IAC3T) organized by Centre for Computer Education, Institute of Professional Studies, University of Allahabad during March 25-27, 2016 at Allahabad. A total of 138 full papers were submitted to the conference, out of which about 40 papers were accepted and finally 35 papers were presented during the conference. This book contains these papers. The conference was a major multidisciplinary conference organized with the objective to expose the participants to the emerging trends in the area of computing, control and communication technology. The conference intended to serve as a major international forum for the exchange of ideas and to provide an interactive platform to the students (budding engineers), engineers, researchers and academicians to exchange their innovative ideas and experiences in the area of advancements in computing, control and communication technology.
The book provides a comprehensive guide to vehicular social networks. The book focuses on a new class of mobile ad hoc networks that exploits social aspects applied to vehicular environments. Selected topics are related to social networking techniques, social-based routing techniques applied to vehicular networks, data dissemination in VSNs, architectures for VSNs, and novel trends and challenges in VSNs. It provides significant technical and practical insights in different aspects from a basic background on social networking, the inter-related technologies and applications to vehicular ad-hoc networks, the technical challenges, implementation and future trends.
"This book examines the current scope of theoretical and practical applications on the security of mobile and wireless communications, covering fundamental concepts of current issues, challenges, and solutions in wireless and mobile networks"--Provided by publisher.
As Vehicular Networks technology enters a critical phase in its evolution, academic institutions, industry, and governments worldwide are investing significant resources into large-scale deployment of such networks in order to leverage its benefits to communication, road safety, and improved traffic flow. Despite the current proliferation of conferences to address the technical, policy, and economic challenges associated with this exciting new technology, notably absent is a self-contained book that integrates and covers these topics in sufficient detail. Vehicular Networks: Techniques, Standards and Applications examines the latest advances in the evolution of vehicular networks, presenting invaluable state-of-the-art ideas and solutions for professionals and academics at work on numerous international development and deployment projects. A versatile text, it cross-references all key aspects, including medium access, scheduling, mobility, services, market introduction, and standard specifications. This informative guide: Describes the roles of networks operators, car manufacturers, service providers, and governmental authorities in development of vehicular technology Illustrates the benefits and real-life applications of vehicular networks Analyzes possible business models for network deployment Examines potential services and possible deployment architectures Explores the technical challenges of deployment, including use of MAC protocols, routing, data dissemination, dynamic IP autoconfiguration, mobility management, security, and driver/passenger privacy Illustrative Figures to Clarify Both Basic and Advanced Concepts Using simplified language, this book elucidates the distinct behavior and characteristics that disti
This book constitutes the proceedings of the 12th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2017, held in Guilin, China, in June 2017.The 70 full papers and 9 short papers presented in this book werde carefully reviewed and selected from 238 submissions. The papers cover various topics such as cognitive radio networks; wireless sensor networks; cyber-physical systems; distributed and localized algorithm design and analysis; information and coding theory for wireless networks; localization; mobile cloud computing; topology control and coverage; security and privacy; underwater and underground networks; vehicular networks; internet of things; information processing and data management; programmable service interfaces; energy-efficient algorithms; system and protocol design; operating system and middle-ware support; and experimental test-beds, models and case studies.
This is the first book devoted to mobility management, covering the important principles, technologies and applications of mobility management based on years of academic research and industry experiences. The content is organized according to the reference models proposed by the authors, and emphasizes on technical principles rather than protocol details; a systematic and comprehensive introduction is presented yet without losing focuses; the existing technologies in cellular system, mobile Internet and IMS/SIP are also extensively compared. This book can be an indispensable reference for mobile communication engineers, computer network engineers, researchers and anyone else involved in academic, industrial and standardization activities on mobility management.
"This book offers historical perspectives on mobile computing, as well as new frameworks and methodologies for mobile networks, intelligent mobile applications, and mobile computing applications"--Provided by publisher.
Overview and Goals Wireless communication technologies are undergoing rapid advancements. The past few years have experienced a steep growth in research in the area of wireless ad hoc networks. The attractiveness of ad hoc networks, in general, is attributed to their characteristics/features such as ability for infrastructure-less setup, minimal or no reliance on network planning and the ability of the nodes to self-organize and self-configure without the involvement of a centralized n- work manager, router, access point or a switch. These features help to set up a network fast in situations where there is no existing network setup or in times when setting up a fixed infrastructure network is considered infeasible, for example, in times of emergency or during relief operations. Even though ad hoc networks have emerged to be attractive and they hold great promises for our future, there are several challenges that need to be addressed. Some of the well-known challenges are attributed to issues relating to scalability, quality-of-service, energy efficiency and security.