Download Free Section On Prospects For Dark Matter Detection Of The White Paper On The Status And Future Of Ground Based Tev Gamma Ray Astronomy Book in PDF and EPUB Free Download. You can read online Section On Prospects For Dark Matter Detection Of The White Paper On The Status And Future Of Ground Based Tev Gamma Ray Astronomy and write the review.

This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the characteristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.
This book provides a comprehensive review of the methodologies and searches for dark matter (DM) annihilation signals using very-high-energy gamma rays (VHE, E > 100 GeV), utilizing data from current Imaging Atmospheric Cherenkov Telescopes (IACTs) in the pre-Cherenkov Telescope Array (CTA) era. It presents the state-of-the-art statistical analysis methods and theoretical models related to TeV DM, applied to data from the H.E.S.S. telescope array, which is currently the most sensitive IACT array for observing the Galactic Center (GC), where the brightest DM annihilation signals are expected. The authors delve into the astrophysics of VHE gamma-ray production through cosmic ray acceleration. They explain the Imaging Atmospheric Cherenkov technique, describe the H.E.S.S. array, and discuss possibilities for DM annihilation-induced gamma-ray spectra and DM distribution profiles. By employing advanced statistical methods, they search for weak signals in the GC region using the H.E.S.S. Inner Galaxy Survey dataset and address systematic uncertainties. The authors present and debate the most constraining results on TeV dark matter models. Finally, this book presents the sensitivity of current IACTs to DM annihilation signals using IGS mock datasets, accounting for systematic and instrumental uncertainties. Detection prospects for canonical TeV DM models, such as the Wino, Higgsino, and quintuplet, are discussed. Sensitivity benchmarks on indirect DM searches with IACTs using H.E.S.S. as an example are provided, setting the stage for future developments in the CTA era. It serves as a consolidated resource for graduate students and researchers, presenting methodologies that could lead to significant advancements in the quest to understand dark matter.
Arrays of imaging atmospheric Cherenkov telescopes (IACTs) probe the very highenergy (VHE) gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of VHE gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a stereoscopic record of the event. This image contains the longitudinal development of the airshower, together with its spatial, temporal, and calorimetric information. The properties of the originating VHE particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the whole event using machine learning techniques. In this thesis, a purely deep learning (DL) driven full-event reconstruction of simulated, stereoscopic IACT events of the future Cherenkov Telescope Array (CTA) is presented. In addition, we apply DL algorithms on real observational IACT data, utilizing Crab Nebula observations by the MAGIC telescopes. In order to conduct all necessary research to achieve the former milestones we developed CTLearn, a package that includes modules for loading and manipulating IACT data and for running DL models, using pixel-wise camera data as input...
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
Dark matter research is one of the most fascinating and active fields among current high-profile scientific endeavours. It holds the key to all major breakthroughs to come in the fields of cosmology and astroparticle physics. The present volume is particularly concerned with the sources and the detection of dark matter and dark energy in the universe and will prove to be an invaluable research tool for all scientists who work in this field.
The H.E.S.S. (High Energy Spectroscopic System) experiment is an array of five Cherenkov telescopes that observe the sky in gamma-rays from about 100 GeV up to several ten TeV.Gamma rays are produced in violent non-thermal phenomena in the Universe in the neighborhood of pulsars, supernovae, black holes, ..., and could also be produced by the annihilation of dark matter particles.Numerous cosmological and astrophysical probes suggest that 85% of the total matter budget in the Universe is of unknown origin. This component of matter known as dark matter is non baryonic and could consist of yet undiscovered particles which privileged candidates are arguably massive particles with electroweak couplings with ordinary matter (WIMPs).Dark matter particles may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are photons which detection at high energy with ground-based Cherenkov telescopes could bring unique information on the nature of the dark matter.H.E.S.S. observes dark-matter-dense regions of the sky such as the Galactic Center and dwarf galaxy satellites of the Milky Way. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars is performed.10 years of observations of the Galactic Center with the four-telescope H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The search for dark matter annihilation signals towards these targets provided the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies. The potential of dark matter detection with the upcoming Cherenkov Telescope Array (CTA) towards the inner Galactic halo are studied. They may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are high energy photons. The detection of these photons with ground-based Cherenkov telescopes may reveal the nature of the dark matter. H.E.S.S. have observed some dark-matter-dense regions of the sky likethe Galactic Center and dwarf galaxies satellites of the Milky Way. In this work 10 years of observations of the Galactic Center with the four-telescopes H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The searches for dark matter annihilation signals towards these targets produced the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies.Perspectives of dark matter detection with the future array CTA (Cherenkov Telescope Array) towards the inner Galactic halo are also discussed. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars complements the dark matter searches.
These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field. Topics covered at the symposium: •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search
"Astrophysical observations are central to the quest for new physics including the search for dark matter. The search is based on identifying potential deviations from the Standard Model in the cosmic-ray and the electromagnetic spectrum of astrophysical sources. The deviations could either be signatures of dark matter or have consequences for our understanding of known sources. The last decade of precision measurements from detectors in space, such as the Fermi Gamma-ray Space Telescope, and the Alpha Magnetic Spectrometer for detecting cosmic rays aboard the International Space Station, have identified certain "anomalies" or unexpected spectral features, that challenge the standard models of how cosmic rays are produced and propagate through the Galaxy. Examples include an unexpectedly hard spectrum of cosmic-ray antiprotons at energies above a few hundred GeV, and an unexplained excess of very-high-energy gamma rays from the Sun. An excess of cosmic-ray antiprotons and a hard spectrum of gamma rays from the Sun also feature in the predictions of various models of dark matter annihilation. However, without a complete understanding of the antiproton spectrum, and the production mechanisms of solar gamma rays, it is impossible to differentiate new physics from the standard astrophysical foreground flux of these particles. Measuring these fluxes at energies that extend into the TeV range is an observational challenge that we explore in this thesis. The High AltitudeWater Cherenkov (HAWC) Observatory is a wide field-of-view array that is currently the only detector capable of making high-statistics measurements of cosmic rays and gamma rays at multi-TeV energies. This work uses data from HAWC collected between 2014-2017 to constrain two unique fluxes at the TeV scale: antiprotons in Galactic cosmic rays, and gamma rays from the quiescent Sun - both relevant foregrounds for astrophysical searches for physics beyond the Standard Model. Cosmic rays in the inner solar system are subject to deflection by the magnetic fields of the Earth and the Sun, affecting the observed deficit or "shadow" of the Moon/Sun. Cosmic rays also interact with the Sun's atmosphere to produce a steady emission of gamma rays up to at least 200 GeV, though the exact underlying mechanism remains a puzzle. We present the strongest upper limits on the antiproton to proton ratio in TeV cosmic rays at ~1% using the Moon shadow as a momentum/ charge discriminant. We also discuss our search for excess gamma rays from the Sun above 1 TeV, and present the resulting implications for models of dark matter capture and annihilation in the Sun. Our results constrain the steady gamma-ray emission from the Sun up to a few times 10−12 TeV cm−2 s−1 at 1 TeV. For dark matter annihilation with long-lived mediators in the Sun, we present the strongest upper limits on dark matter-proton scattering cross section up to ~10−45 cm2, which is a potential improvement of four orders of magnitude compared to direct-detection experiments for dark matter mass of 1 TeV."--Pages xi-xii.