Download Free Second Harmonic Resonance In The Interaction Of Capillary And Gravity Waves Book in PDF and EPUB Free Download. You can read online Second Harmonic Resonance In The Interaction Of Capillary And Gravity Waves and write the review.

The method of multiple scales is used to derive equations governing the temporal and spatial variation for the amplitudes and phases of inviscid capillary-gravity traveling waves in the case of second harmonic resonance (Wilton's ripples), but including the effects of near resonance, liquid depth, and pressure perturbations exerted by an external subsonic gas on the liquid/gas interface. The spatial form of the equations shows that, below a critical gas velocity, energy is transferred between the fundamental and its first harmonic in keeping with the energy conservation law. However, the amplitude of the first harmonic decreases with gas velocity. Above the critical gas velocity, the gas/liquid interface grows monotonically with distance. It is found that pure amplitude-modulated waves are possible only at perfect resonance. Pure phase-modulated, near-resonant waves are periodic, as the resonance forces a readjustment of the phases to produce perfect resonance. The effectiveness of the resonance in rippling the interface increases as the liquid depth decreases. (Author).
The analysis is a second-order analysis of the resonant interactions among triads of waves with wavelengths in the capillary-gravity and pure capillary ranges. The analysis is not a power series perturbation analysis, and one of the objects is the removal of the secularity which arises through power series perturbations. It is further found that the interactions are energy-conserving to the order considered here. Suitable modifications are made to accommodate the inevitable viscous attenuation associated with these small wavelengths. A start is made toward describing more completely the various spectra of random seas in wave-number and frequency regions where these interactions are dynamically significant. (Author).
This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.
This book presents two distinct aspects of wave dynamics – wave propagation and diffraction – with a focus on wave diffraction. The authors apply different mathematical methods to the solution of typical problems in the theory of wave propagation and diffraction and analyze the obtained results. The rigorous diffraction theory distinguishes three approaches: the method of surface currents, where the diffracted field is represented as a superposition of secondary spherical waves emitted by each element (the Huygens–Fresnel principle); the Fourier method; and the separation of variables and Wiener–Hopf transformation method. Chapter 1 presents mathematical methods related to studying the problems of wave diffraction theory, while Chapter 2 deals with spectral methods in the theory of wave propagation, focusing mainly on the Fourier methods to study the Stokes (gravity) waves on the surface of inviscid fluid. Chapter 3 then presents some results of modeling the refraction of surf ace gravity waves on the basis of the ray method, which originates from geometrical optics. Chapter 4 is devoted to the diffraction of surface gravity waves and the final two chapters discuss the diffraction of waves by semi-infinite domains on the basis of method of images and present some results on the problem of propagation of tsunami waves. Lastly, it provides insights into directions for further developing the wave diffraction theory.
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
This book is a complete revision of the part of Monin & Yaglom's famous two-volume work "Statistical Fluid Mechanics: Mechanics of Turbulence" that deals with the theory of laminar-flow instability and transition to turbulence. It includes the considerable advances in the subject that have been made in the last 15 years or so. It is intended as a textbook for advanced graduate courses and as a reference for research students and professional research workers. The first two Chapters are an introduction to the mathematics, and the experimental results, for the instability of laminar (or inviscid) flows to infinitesimal (in practice "small") disturbances. The third Chapter develops this linear theory in more detail and describes its application to particular problems. Chapters 4 and 5 deal with instability to finite-amplitude disturbances: much of the material has previously been available only in research papers.
This is an introductory book about nonlinear waves. It focuses on two properties that various different wave phenomena have in common, the "nonlinearity" and "dispersion", and explains them in a style that is easy to understand for first-time students. Both of these properties have important effects on wave phenomena. Nonlinearity, for example, makes the wave lean forward and leads to wave breaking, or enables waves with different wavenumber and frequency to interact with each other and exchange their energies. Dispersion, for example, sorts irregular waves containing various wavelengths into gentler wavetrains with almost uniform wavelengths as they propagate, or cause a difference between the propagation speeds of the wave waveform and the wave energy. Many phenomena are introduced and explained using water waves as an example, but this is just a tool to make it easier to draw physical images. Most of the phenomena introduced in this book are common to all nonlinear and dispersive waves. This book focuses on understanding the physical aspects of wave phenomena, and requires very little mathematical knowledge. The necessary minimum knowledges about Fourier analysis, perturbation method, dimensional analysis, the governing equations of water waves, etc. are provided in the text and appendices, so even second- or third-year undergraduate students will be able to fully understand the contents of the book and enjoy the fan of nonlinear wave phenomena without relying on other books.
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses on those ideas and formulations that will be of greatest interest to students and researchers in applied mathematics and theoretical physics. Dr. Shivamoggi covers the main branches of fluid dynamics, with particular emphasis on flows of incompressible fluids. Readers well versed in the physical and mathematical prerequisites will find enlightening discussions of many lesser-known areas of study in fluid dynamics. This thoroughly revised, updated, and expanded Second Edition features coverage of recent developments in stability and turbulence, additional chapter-end exercises, relevant experimental information, and an abundance of new material on a wide range of topics, including: * Hamiltonian formulation * Nonlinear water waves and sound waves * Stability of a fluid layer heated from below * Equilibrium statistical mechanics of turbulence * Two-dimensional turbulence