Download Free Seawater Reverse Osmosis Swro Desalination Energy Consumption In Plants Advanced Low Energy Technologies And Future Developments For Improving Energy Efficiency Book in PDF and EPUB Free Download. You can read online Seawater Reverse Osmosis Swro Desalination Energy Consumption In Plants Advanced Low Energy Technologies And Future Developments For Improving Energy Efficiency and write the review.

High-energy consumption is a critical issue associated with seawater reverse osmosis (SWRO) desalination, although the SWRO has been regarded as one of the most energy-efficient processes for seawater desalination. This means that SWRO involves a larger amount of fossil fuel and other energy sources for water production, which imposes a negative impact on the environment such as greenhouse gas emission. Therefore, the high-energy consumption of SWRO should be addressed to minimize environmental impacts and to allow for sustainable exploitation of seawater. However, the recent trend of energy consumption in SWRO seems to have reached a saturation point, which is still higher than theoretical minimum energy. To find new and innovative strategies for lowering current energy consumption, a comprehensive understanding of energy use in SWRO plants from theoretical analysis to actual energy consumption in real SWRO plants is required. This book can provide readers with information about the current state of energy consumption in actual SWRO plants, the fundamental understanding of energy use of SWRO plants from theoretical point of view, and advanced technologies and processes that could be applied for future energy reduction. In addition, this book will offer a detailed methodology for analyzing energy issues in seawater desalination. Through this book, readers will obtain an insight into how to deal with and analyze the energy issues in SWRO desalination.
Management of Concentrate from Desalination Plants provides an overview of the alternatives for managing concentrate generated by brackish water and seawater desalination plants, as well as site-specific factors involved in the selection of the most viable alternative for a given project, and the environmental permitting requirements and studies associated with their implementation. The book focuses on widely used alternatives for disposal of concentrate, including discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; evaporation; and zero liquid discharge. Direct discharge through new outfall; discharge through existing wastewater treatment plant outfall; and co-disposal with the cooling water of existing coastal power plant are thoroughly described, and design guidance for the use of these concentrate disposal alternatives is presented with engineers and practitioners in the field of desalination in mind. Key advantages, disadvantages, environmental impact issues, and possible solutions are presented for each discharge alternative. Easy-to-use graphs depicting construction costs as a function of concentrate flow rate are provided for all key concentrate management alternatives. - Gives a critical overview of the latest practices and technological advancements in managing concentrate - Discusses the relationship between concentrate quality and quantity and other desalination processes - Provides design and cost guidance information to assist practitioners with the selection and sizing of the most commonly practiced concentrate disposal alternatives
An in-depth guide to reverse osmosis desalination This Water Environment Federation and WateReuse Association publication provides comprehensive information on the planning and engineering of brackish and seawater desalination projects for municipal water supplies. After a brief overview of widely used desalination technologies, Desalination Engineering focuses on reverse osmosis desalination. The book discusses basic principles, planning and environmental review of projects, design and selection of key desalination plant components, desalinated water posttreatment, and concentrate management. Guidelines on sizing and cost estimation of desalination plant facilities are also included in this practical resource. COVERAGE INCLUDES: Source water quality characterization Fundamentals of reverse osmosis desalination Planning considerations Environmental review and permitting Intakes for source water collection Intake pump stations Source water screening and conditioning Sand removal, sedimentation, and dissolved air flotation Pretreatment by granular media filtration Pretreatment by membrane filtration Comparison of granular media and membrane pretreatment Reverse osmosis separation Post-treatment of desalinated water Desalination plant discharge management Desalination project cost estimates
Pretreatment for Reverse Osmosis Desalination is a comprehensive reference on all existing and emerging seawater pretreatment technologies used for desalination. The book focuses on reverse osmosis membrane desalination, which at present is the most widely applied technology for the production of fresh drinking water from highly saline water sources (brackish water and seawater). Each chapter contains examples illustrating various pretreatment technologies and their practical implementation. - Provides in-depth overview of the key theoretical concepts associated with desalination pre-treatment - Gives insight into the latest trends in membrane separation technology - Incorporates analytical methods and guidelines for monitoring pretreatment systems
The book assembles the latest research on new design techniques in water supplies using desalinated seawater. The authors examine the diverse issues related to the intakes and outfalls of these facilities. They clarify how and why these key components of the facilities impact the cost of operation and subsequently the cost of water supplied to the consumers. The book consists of contributed articles from a number of experts in the field who presented their findings at the "Desalination Intakes and Outfalls" workshop held at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia in October, 2013. The book integrates coverage relevant to a wide variety of researchers and professionals in the general fields of environmental engineering and sustainable development.
The book presents a thorough overview of the latest trends and challenges in renewable energy technologies applications for water desalination, with an emphasis on environmental concerns and sustainable development. Emphasis is on the various uses of renewable energy, as well as economics & scale-up, government subsidies & regulations, and environmental concerns. It provides an indication on how renewable energy technologies are rapidly emerging with the promise of economic and environmental viability for desalination. Further it gives a clear indication on how exactly to accelerate the expansion and commercialization of novel water production systems powered by renewable energies and in what manner environmental concerns may be minimized. This book is all-inclusive and wide-ranging and directed at decision makers in government, industry and the academic world as well as students.
The book looks at water availability and water demand in various sectors till 2050, presenting a methodology to prioritize options both on the demand and on the supply side, with a special focus on renewable energy desalination.
The book presents chapters from world leaders on water desalination advances with respect to processes, separations materials, and energy and environmental considerations. It provides a balanced discussion of the mature and newer desalination technologies and provides a fundamental assessment of the potential of emerging approaches. Realistic assessments for the feasibility of energy extraction from salinity gradients, desalting high salinity source water, membrane distillation, capacitive deionization, are among the topics discussed. Also, among the topics discussed in the book are recent advances in the desalination application of nanomaterials, carbon nanotubes, and surface structuring of membranes.
Thermal Desalination Processes is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. These volumes discuss matters of great relevance to our world on desalination which is a critically important as clearly the only possible means of producing fresh water from the sea for many parts of the world. The two volumes present state-of-the art subject matter of various aspects of Thermal desalination processes such as: Multi-Stage Flash evaporation (MSF) and Multi Effect Distillation (MED) and Mechanical / Thermal Vapor Compression, in addition to the Hybrid Desalination Systems. Chemical Dosing For Desalination; Control Scheme of the Plants; Steady-State Model; Steady-State Simulation; Dynamic Model; Economics and Performance of Desalination Plants. Theses volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy and Decision Makers.