Download Free Seasonal Development Of The Biological Control Agent Of Dalmatian Toadflax Mecinus Janthiniformis Curculionidae Coleoptera In Utah Book in PDF and EPUB Free Download. You can read online Seasonal Development Of The Biological Control Agent Of Dalmatian Toadflax Mecinus Janthiniformis Curculionidae Coleoptera In Utah and write the review.

Invasive weeds are threatening ecosystem function and productivity all over the world by outcompeting desirable vegetation and reducing species diversity. One option for long-term control of such weeds is biological control using natural insect enemies. Such a program has been developed for management of Dalmatian toadflax (Linaria dalmatica (L.) Miller (Plantaginaceae)) in North America using a stem-mining weevil, Mecinus janthiniformis To¿Łevski and Caldara (Coleoptera: Curculionidae). Although widely effective in northern regions, such as in British Columbia and in the American northwest, this insect has been slow to suppress Dalmatian toadflax in southern most regions of their current range, including areas in Utah and Colorado, and little is known of the limiting factors leading to slow weed suppression in these areas. Using field assessments of insect and plant activity over two growing seasons at several sites, this study aimed to provide degree-day and calendar-date descriptions of insect phenology. In addition, dead, overwintered Dalmatian toadflax stems were dissected to determine overwintering mortality of weevil adults before spring emergence, and living stems were dissected to determine development stages and mortality of weevils during summer development. Degree-day and calendar-date based models independently resulted in consistent trends in weevil phenology between sites and between years in this study, although the degree-day model is likely to be most useful for purposes of predicting weevil life cycle timing. Interestingly, the sexes differed in their phenology in that males consistently emerged from overwintering sites and were found on Dalmatian toadflax stems considerably earlier than females in the spring. Females as well as males tended to peak in abundance on stems in late-May when Dalmatian toadflax stems reached full maturity. Overall mortality of M. janthiniformis during a lifecycle was low for all samples; approximately 83% of adults successfully emerged from overwintered stems in the following spring, and greater than 65% of larvae survived to adulthood before overwintering. This resulted in >50% of weevils surviving larval development, overwintering, and spring emergence as adults. The majority of M. janthiniformis deaths (51%) resulted from parasitism by chalcidoid wasps during summer development to adulthood. These parasitoid wasps, and also M. janthiniformis adults, likely created the peculiar exit holes that were observed in live Dalmatian toadflax stems during the summer. Although M. janthiniformis populations were slow to provide effective control of Dalmatian toadflax at sites in Utah, this study indicates that the phenology and survivorship of M. janthiniformis individuals in Utah are well suited for successful biocontrol. If given enough time to build populations, M. janthiniformis appears to be capable of providing effective Dalmatian toadflax control in southern regions, but other limiting factors, such as precipitation and host plant quality, should be considered in future studies to explain slow weed suppression. Phenology models and estimates of mortality of M. janthiniformis generated by this study at sites in Utah may be helpful in implementing future biocontrol programs of Dalmatian toadflax.
This open access book describes the serious threat of invasive species to native ecosystems. Invasive species have caused and will continue to cause enormous ecological and economic damage with ever increasing world trade. This multi-disciplinary book, written by over 100 national experts, presents the latest research on a wide range of natural science and social science fields that explore the ecology, impacts, and practical tools for management of invasive species. It covers species of all taxonomic groups from insects and pathogens, to plants, vertebrates, and aquatic organisms that impact a diversity of habitats in forests, rangelands and grasslands of the United States. It is well-illustrated, provides summaries of the most important invasive species and issues impacting all regions of the country, and includes a comprehensive primary reference list for each topic. This scientific synthesis provides the cultural, economic, scientific and social context for addressing environmental challenges posed by invasive species and will be a valuable resource for scholars, policy makers, natural resource managers and practitioners.
Classical biological control of weeds is generally considered an effective, safe, and cost effective tool for controlling widespread weeds in natural areas. However, only 60% of releases have become established and, of those, only 50% have led to control. Therefore, understanding the impacts of agents on target weeds across spatial scales, at different insect densities, and over time can give biological control practitioners the knowledge necessary to improve establishment and success rates. My studies characterized the impacts the biological control agent, Mecinus janthinus, on the rangeland weed Dalmatian toadflax (Linaria dalmatica) at individual plant and plant population scales. Individual plant studies were conducted in a garden and replicated on plants growing in the field, to measure the impact of agents on plant growth and primary physiology. The population study followed operational scale releases of M. janthinus for three to four years using intensive monitoring to characterize L. dalmatica cover, density, and population structure, and weevil establishment and population increase. I also evaluated which parameters were most important to measure to determine establishment and success. In the common garden experiment, M. janthinus injury was found to reduce relative plant growth, as well as root, stem, and reproductive biomass at medium and high adult densities. Trends of reduced photosynthetic, conductance, or transpiration rates with increasing M. janthinus density were observed. In the field experiment, M. janthinus injury led to reduced growth. Gas exchange rates decreased over the season and were lower in plants exposed to high larval and adult herbivore pressure. Field monitoring indicated successful M. janthinus establishment at releases across a range of elevations, slopes, and geographic locations, though high rates of overwintering mortality were observed at all sites. Linaria dalmatica cover was variable within watersheds and patches, and also differed between watersheds. Abundance of L. dalmatica decreased over time based on cover measurements, but did not change over time with respect to density. The proportion of mature L. dalmatica stems decreased over time. The majority of changes in L. dalmatica over time were the same in release and control transects and could not be attributed to M. janthinus.
There has been little documentation of the success of introduced agents for classical weed biological control. Field evaluation of an insect's establishment, spread and early host impact within its new environment must be performed before agent success can either be doucmented or predicted. Population attributes of the ednophagous biological control agent, Mecinus janthinus Germar (Coleoptera: Curculionidae), and interactions with its target weed, Dalmation toadflax, (Linaria dalmatica (L.) Mill.) (Scrophulariaceae), were explored across variable levels of resource availability and insect abundance. Patterns of population growth and impact of this biocontrol agent were very consistent throughout this study. Within four years of release, populations of M. janthinus achieved outbreak population levels and virtually eliminated the seed producing shoots from toadflax stands. There is a tight but flexible relationship between oviposition site selection and offspring performance in this endophagous herbivore, maximizing offspring survival even under moderate to high M. janthinus densities. These attributes allow M.janthinus to be an effective biocontrol agent under changing levels of resource availability.