Download Free Search For Vector Like Quarks And Dark Matter In Mono Top Events In Proton Proton Collisions With The Atlas Detector Book in PDF and EPUB Free Download. You can read online Search For Vector Like Quarks And Dark Matter In Mono Top Events In Proton Proton Collisions With The Atlas Detector and write the review.

This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at √s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.
This thesis describes in detail the search for new phenomena in mono-jet final states with the ATLAS experiment at the LHC. The final state is considered the golden channel in the searches for large extra dimensions (LED) but also allows access to a very rich SUSY-related phenomenology pertaining to the production of weakly interacting massive particles (WIMPS), SUSY Dark Matter candidates, GMSB SUSY models with very light gravitino masses, as well as stop an sbottom pair production in compressed scenarios (with nearly degenerated squarks and the lightest neutralino), and also invisible Higgs searches, among others. Here, a number of these scenarios are explored. The measurements presented yield new powerful constraints on the existence of extra spatial dimensions, the pair production of WIMPs, and also provide the best limit to date on the gravitino mass.
Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.
Dark matter is a frequently discussed topic in contemporary particle physics. Written strictly in the language of particle physics and quantum field theory, these course-based lecture notes focus on a set of standard calculations that students need in order to understand weakly interacting dark matter candidates. After introducing some general features of these dark matter agents and their main competitors, the Higgs portal scalar and supersymmetric neutralinos are introduced as our default models. In turn, this serves as a basis for exploring four experimental aspects: the dark matter relic density extracted from the cosmic microwave background; indirect detection including the Fermi galactic center excess; direct detection; and collider searches. Alternative approaches, like an effective theory of dark matter and simplified models, naturally follow from the discussions of these four experimental directions.
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most importantly, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy and sensitivity regions where superpartners and supersymmetric dark matter candidates are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and consequences for understanding the cosmological history of the universe, and more. This volume begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry which is accessible to anyone with a basic knowledge of the Standard Model of particle physics.Next is an overview of open questions, followed by chapters on topics such as how to detect superpartners and tools for studying them, the current limits on superpartner masses as we enter the LHC era, the lightest superpartner as a dark matter candidate in thermal and non-thermal cosmological histories, and associated Z'' physics. Most chapters have been extended and updated from the earlier edition and some are new. This superb book will allow interested physicists to understand the coming experimental and theoretical progress in supersymmetry and the implications of discoveries of superpartners, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.