Download Free Search For The Neutral Mssm Higgs Bosons In The Ditau Decay Channels At Cdf Run Ii Book in PDF and EPUB Free Download. You can read online Search For The Neutral Mssm Higgs Bosons In The Ditau Decay Channels At Cdf Run Ii and write the review.

All papers in these proceedings are in English. IFAE is an annual conference on high energy physics. Distinguished scientists discuss relevant topics of particle physics, cosmic ray and neutrino physics, as well as detector and accelerator technologies. Topics included are: the standard model, SUSY and beyond the standard model, heavy flavor physics, neutrinos and cosmic rays, as well as detectors and new technologies.
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics. Sample Chapter(s). Chapter 1: Historical Introduction to Electric and Mangnetic Moments (367 KB). Contents: Historical Introduction (B L Roberts); Electromagnetic Dipole Moments and New Physics (A Czarnecki & W J Marciano); Lepton g OCo 2 from 1947 to Present (T Kinoshita); Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron (S Laporta & E Remiddi); Measurements of the Electron Magnetic Moment (G Gabrielse); Determining the Fine Structure Constant (G Gabrielse); Helium Fine Structure Theory for the Determination of (K Pachucki & J Sapirstein); Hadronic Vacuum Polarization and the Lepton Anomalous Magnetic Moments (M Davier); The Hadronic Light-by-Light Contribution to a, e (J Prades et al.); General Prescriptions for One-loop Contributions to a e, (K R Lynch); Measurement of the Muon ( g OCo 2) Value (J P Miller et al.); Muon ( g OCo 2) and Physics Beyond the Standard Model (D StAckinger); Probing CP Violation with Electric Dipole Moments (M Pospelov & A Ritz); The Electric Dipole Moment of the Electron (E D Commins & D DeMille); Neutron EDM Experiments (S K Lamoreaux & R Golub); Nuclear Electric Dipole Moments (W C Griffith et al.); EDM Measurements in Storage Rings (B L Roberts et al.); Models of Lepton Flavor Violation (Y Okada); Search for the Charged Lepton-Flavor-Violating Transition Moments l OaAE l OC (Y Kuno). Readership: Researchers and graduate students in particle physics, atomic physics and nuclear physics, as well as experts working in the field
The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.
Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.
This comprehensive work thoroughly introduces and reviews the set of results from Belle and BaBar - after more than two decades of independent and complementary work - all the way from the detectors and the analysis tools used, up to the physics results, and the interpretation of these results. The world’s two giant B Factory collaborations, Belle at KEK and BaBar at SLAC, have successfully completed their main mission to discover and quantify CP violation in the decays of B mesons. CP violation is a necessary requirement to distinguish unambiguously between matter and antimatter. The shared primary objective of the two B Factory experiments was to determine the shape of the so-called unitarity triangle, an abstract triangle representing interactions of quarks, the elementary constituents of matter. The area of the triangle is a measure of the amount of CP violation associated with the weak force. Many other measurements have been performed by the B Factories and are also discussed in this work.
This thesis presents innovative contributions to the CMS experiment in the new trigger system for the restart of the LHC collisions in Run II, as well as original analysis methods and important results that led to official publications of the Collaboration. The author's novel reconstruction algorithms, deployed on the Field-Programmable Gate Arrays of the new CMS trigger architecture, have brought a gain of over a factor 2 in efficiency for the identification of tau leptons, with a very significant impact on important H boson measurements, such as its decays to tau lepton pairs and the search for H boson pair production. He also describes a novel analysis of HH → bb tautau, a high priority physics topic in a difficult channel. The original strategy, optimisation of event categories, and the control of the background have made the result one of the most sensitive concerning the self-coupling of the Higgs boson among all possible channels at the LHC.
This work was nominated as an outstanding PhD thesis by the LPSC, Université Grenoble Alpes, France. The LHC Run 1 was a milestone in particle physics, leading to the discovery of the Higgs boson, the last missing piece of the so-called "Standard Model" (SM), and to important constraints on new physics, which challenge popular theories like weak-scale supersymmetry. This thesis provides a detailed account of the legacy of the LHC Run 1 ≤¥regarding these aspects. First, the SM and the need for its extension are presented in a concise yet revealing way. Subsequently, the impact of the LHC Higgs results on scenarios of new physics is assessed in detail, including a careful discussion of the relevant uncertainties. Two approaches are considered: generic modifications of the Higgs couplings, possibly arising from extended Higgs sectors or higher-dimensional operators; and tests of specific new physics models. Lastly, the implications of the null results of the searches for new physics are discussed with a particular focus on supersymmetric dark matter candidates. Here as well, two approaches are presented: the "simplified models" approach, and recasting by event simulation. This thesis stands out for its educational approach, its clear language and the depth of the physics discussion. The methods and tools presented offer readers essential practical tools for future research.