Download Free Search For Pair Production Of A New Heavy Quark That Decays Into A W Boson And A Light Quark In Pp Collisions At S Book in PDF and EPUB Free Download. You can read online Search For Pair Production Of A New Heavy Quark That Decays Into A W Boson And A Light Quark In Pp Collisions At S and write the review.

In this study, a search is presented for pair production of a new heavy quark (Q) that decays into a W boson and a light quark (q) in the final state where one W boson decays leptonically (to an electron or muon plus a neutrino) and the other W boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at √s = 8 TeV collected by the ATLAS detector at the LHC. No evidence of QQ¯ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR(Q → Wq)=1. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR(Q → Wq) versus BR(Q → Hq).
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
A search with the ATLAS detector for the pair production of a new b' quark in the Z boson plus b quark decay channel is reported. The pp collision data comprise 4.7 fb-1 of integrated luminosity at sqrt(s) = 7 TeV collected at the CERN Large Hadron Collider in 2011. This search complements recent searches for a b' decaying to a W boson and a top quark, and it is particularly important for new physics models containing vector-like quarks. From events containing both a Z boson reconstructed from electrons and a b tagged jet, any potential signal is enriched by selecting a subsample with large b' candidate pT. No evidence for a b' signal is found in this subsample; the invariant mass spectrum of the b' candidate agrees well with the Standard Model prediction. For the case of a b' that decays only to Z + b, masses mb'
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches – in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.
We present a measurement of the production cross section for ZW and ZZ boson pairs in final states with a pair of charged leptons, from the decay of a Z boson, and at least two jets, from the decay of a W or Z boson, using the full sample of proton-antiproton collisions recorded with the CDF II detector at the Tevatron, corresponding to 8.9 fb(̂-1) of integrated luminosity. We increase the sensitivity to vector boson decays into pairs of quarks using a neural network discriminant that exploits the differences between the spatial spread of energy depositions and charged-particle momenta contained within the jet of particles originating from quarks and gluons. Additionally, we employ new jet energy corrections to Monte Carlo simulations that account for differences in the observed energy scales for quark and gluon jets. The number of signal events is extracted through a simultaneous fit to the dijet mass spectrum in three classes of events: events likely to contain jets with a heavy-quark decay, events likely to contain jets originating from light quarks, and events that fail these identification criteria. We determine the production cross section to be 2.5 +2.0 -1.0 pb (
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.