Download Free Search For Dark Matter And Supersymmetry With A Compressed Mass Spectrum In The Vector Boson Fusion Topology In Proton Proton Collisions At Sqrts Book in PDF and EPUB Free Download. You can read online Search For Dark Matter And Supersymmetry With A Compressed Mass Spectrum In The Vector Boson Fusion Topology In Proton Proton Collisions At Sqrts and write the review.

A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at sqrt(s) = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry also in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 inverse femtobarns recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
Our first search for supersymmetry in the vector-boson fusion topology is presented. The search targets final states with at least two leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 19.7 fb-1 of proton-proton collisions at [arrow]" = 8 TeV collected with the CMS detector at the CERN LHC. The observed dijet invariant mass spectrum is found to be consistent with the expected standard model prediction. Upper limits are set on the cross sections for chargino and neutralino production with two associated jets, assuming the supersymmetric partner of the [tau] lepton to be the lightest slepton and the lightest slepton to be lighter than the charginos. For a compressed-mass-spectrum scenario in which the mass difference between the lightest supersymmetric particle X~01 and the next lightest, mass-degenerate, gaugino particles X~02 and X~"1 is 50 GeV, a mass lower limit of 170 GeV is set for these latter two particles.
This thesis presents the search for new physics in the final state containing a single photon and missing transverse momentum. The analysis is performed on 20.3fb-1 of proton-proton collisions data at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the Large Hadron Collider. Given the good agreement of the data with the Standard Model pre- diction of such events, an upper limit to the visible cross section produced by new physics is derived. The observed limit at 95% confidence level is 3.64 fb.In this thesis, the results are also interpreted as limits in the parameter space of two new physics models. The first model is an effective field theory, inspired by Fermi-LAT results, in which dark matter particles couple to photons via a contact interaction vertex. Limits are set on the effective mass scale and depend on the postulated coupling constants. The limits set in this dark matter model provide an effective constraint in the parameter space of the theory compatible with the Fermi-LAT results. The second one is a simplified supersymmetric model describing squark pair production with their subsequent decay into a quark and a neutralino. The photon is emitted as initial or final state radiation and the spectrum is compressed, i.e. the mass difference between the squark and the neutralino is assumed to be small. Limits are set on the production cross-section; squark masses are excluded up to 250 GeV in the very compressed region. As the photon can be irradiated from the intermediate squark, this final state would eventually provide the possibility to probe the charge of the squark.A preliminary study has also been carried out to show the search sensitivity with 13 TeV data, which indicate that the limits presented in this thesis can already be improved by 10% with 5fb-1.
Results are presented from a search for supersymmetric particles in scenarios with a compressed mass spectrum. The data sample corresponds to 19.7 inverse femtobarns of proton-proton collisions recorded by the CMS experiment at √s = 8 TeV. The search targets top squark ($ ilde{t}$ pair production in scenarios with mass differences ?m = m($ ilde{t}$ – m($ ilde{i}$10) below the W-boson mass and with top-squark decays in the four-body mode ($ ilde{t}$ → blv$ ilde{i}$10), where the ($ ilde{i}$10) is assumed to be the lightest supersymmetric particle (LSP). The signature includes a high transverse momentum (pT) jet associated with initial-state radiation, one or two low-pT leptons, and significant missing transverse energy. The event yields observed in data are consistent with the expected background contributions from standard model processes. Limits are set on the cross section for top squark pair production as a function of the $ ilde{t}$ and LSP masses. Assuming a 100% branching fraction for the four-body decay mode, top-squark masses below 316 GeV are excluded for ?m = 25 GeV at 95% CL. Furthermore, the dilepton data are also interpreted under the assumption of chargino-neutralino production, with subsequent decays to sleptons or sneutrinos. Assuming a difference between the common $ ilde{i}$1+/$ ilde{i}$2+ mass and the LSP mass of 20 GeV and a ?-enriched decay scenario, masses in the range m( $ ilde{i}$1+)
A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. This search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are placed on the parameter space of the simplified models. Mediator masses between 80 and 400 GeV in the scalar and pseudoscalar models, and up to 1.5 TeV in the vector and axial vector models, are excluded.
A search for evidence of particle dark matter (DM) and unparticle production at the LHC has been performed using events containing two charged leptons, consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns of pp collisions at the LHC at a center-of-mass energy of 8 TeV. No significant excess of events is observed above the number expected from the standard model contributions. The results are interpreted in terms of 90% confidence level limits on the DM-nucleon scattering cross section, as a function of the DM particle mass, for both spin-dependent and spin-independent scenarios. Limits are set on the effective cutoff scale Lambda, and on the annihilation rate for DM particles, assuming that their branching fraction to quarks is 100%. Additionally, the most stringent 95% confidence level limits to date on the unparticle model parameters are obtained.
Astrophysical observations implying the existence of Dark Matter and Dark Energy, which are not described by the Standard Model (SM) of particle physics, have led to extensions of the SM predicting new particles that could be directly produced at the Large Hadron Collider (LHC) at CERN. Based on 2015 and 2016 ATLAS proton-proton collision data, this thesis presents searches for the supersymmetric partner of the top quark, for Dark Matter, and for DarkEnergy, in signatures with jets and missing transverse energy. Muon detection is key to some of the most important LHC physics results, including the discovery of the Higgs boson and the measurement of its properties. The efficiency with which muons can be detected with the ATLAS detector is measured using Z boson decays. The performance of high-precision Monitored Drift Tube muon chambers under background rates similar to the ones expected for the High Luminosity-LHC is studied.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN’s Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at √s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.