Download Free Sea Surface Sound Book in PDF and EPUB Free Download. You can read online Sea Surface Sound and write the review.

In its relentless pursuit of further knowledge, science tends to compartmentalize. Over the years the pursuit of What might be called geophysical acoustics of the sea-surface has languished. This has occured even through there are well-developed and active research programs in underwater acoustics, ocean hydrodynamics, cloud and precipitation physics, and ice mechanics - to name a few - as well as a history of engineering expertise built on these scientific fields. It remained to create a convergence, a dialogue across disciplines, of mutual benefit. The central theme of the Lerici workshop, perhaps overly simplified, was 'What are the mechanisms causing ambient noise at the upper surface of the ocean?' What could hydrodynamicists contribute to a better understanding of breaking wave dynamics, bubble production, ocean wave dynamics, or near-surface turbulence for the benefit of the underwater acoustics community? What further insights could fluid dynamicists gain by including acoustic measurements in their repertoire of instrumentation? While every attendee will have his or her percep tions of details, it was universally agreed that a valuable step had been taken to bring together two mature disciplines and that significant co-operative studies would undoubtedly follow. The scope of the workshop was enlarged beyond its original intent to also include the question of ice-noise generation. The success of this decision can be seen in high quality of the presentations. the contribution of its disciples in the other workshop discussions and the heightened awareness and interest of we other novices.
For the 119 species of marine mammals, as well as for some other aquatic animals, sound is the primary means of learning about the environment and of communicating, navigating, and foraging. The possibility that human-generated noise could harm marine mammals or significantly interfere with their normal activities is an issue of increasing concern. Noise and its potential impacts have been regulated since the passage of the Marine Mammal Protection Act of 1972. Public awareness of the issue escalated in 1990s when researchers began using high-intensity sound to measure ocean climate changes. More recently, the stranding of beaked whales in proximity to Navy sonar use has again put the issue in the spotlight. Ocean Noise and Marine Mammals reviews sources of noise in the ocean environment, what is known of the responses of marine mammals to acoustic disturbance, and what models exist for describing ocean noise and marine mammal responses. Recommendations are made for future data gathering efforts, studies of marine mammal behavior and physiology, and modeling efforts necessary to determine what the long- and short-term impacts of ocean noise on marine mammals.
Sound Images of the Ocean is the first comprehensive overview of acoustic imaging applications in the various fields of marine research, utilization, surveillance, and protection. The book employs 400 sound images of the sea floor and of processes in the sea volume, contributed by more than 120 marine experts from 22 nations.
Understanding and constructively using natural sound in the ocean has become of prime importance with the shift of emphasis to protecting the environment and exercising responsible global resource management which has followed the end of the Cold War. Especially now that we realise that marine mammals and other inhabitants of the oceans are threatened by our acoustic pollution of their environment, the use of natural sound as a non-intrusive remote sensing probe has become particularly germane. This was the first meeting on the subject since the fall of Soviet-Western barriers, and the proceedings include significant work from premier researchers in the former Soviet Union. It was also the first meeting which specifically addressed the new and exciting idea of using natural sound in applications for monitoring the marine environment. The proceedings include a number of papers on various aspects of this topic. Further new work on the basic physics of sound production and propagation is also included. This volume includes leading-edge work from the foremost researchers in the field, including Bill Carey, Lawrence Crum, Nikolai Dubrovskii, David Farmer, Brian Kerman, Bill Kuperman, Michael Longuet-Higgins, Hank Medwin, Ken Melville, A Prosperetti and many others.
The continents of our planet have already been exploited to a great extent. Therefore man is turning his sight to the vast spaciousness of the ocean whose resources - mineral, biological, energetic, and others - are just beginning to be used. The ocean is being intensively studied. Our notions about the dynam ics of ocean waters and their role in forming the Earth's climate as well as about the structure of the ocean bottom have substantially changed during the last two decades. An outstanding part in this accelerated exploration of the ocean is played by ocean acoustics. Only sound waves can propagate in water over large distances. Practically all kinds of telemetry, communication, location, and re mote sensing of water masses and the ocean bottom use sound waves. Propa gating over thousands of kilometers in the ocean, they bring information on earthquakes, eruptions of volcanoes, and distant storms. Projects using acoustical tomography systems for exploration of the ocean are presently be ing developed. Each of these systems will allow us to determine the three-di mensional structure of water masses in regions as large as millions of square kilometers.
This volume reviews the current state of knowledge regarding the effects of low-frequency sound on marine mammals and makes recommendations for research. In addition, the book describes current federal regulations prescribed under the Marine Mammal Protection Act that govern the taking of marine mammals by scientific research activities, and it recommends changes to expedite the regulatory process dealing with scientific research activities.
Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex sonar systems operating in the undersea environment. Previous editions of the book have provided invaluable guidance to sonar technologists, acoustical oceanographers and applied mathematicians in the selection and application of underwater acoustic models. Now that simulation is fast becoming an accurate, efficient and economical alternative to field-testing and at-sea training, this new edition will also provide useful guidance to systems engineers and operations analysts interested in simulating sonar performance. Guidelines for selecting and using available propagation, noise and reverberation models are highlighted. Specific examples of each type of model are discussed to illustrate model formulations, assumptions and algorithm efficiency. Instructive case studies demonstrate applications in sonar simulation.
This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.
The developments in the field of ocean acoustics over recent years make this book an important reference for specialists in acoustics, oceanography, marine biology, and related fields. Fundamentals of Acoustical Oceanography also encourages a new generation of scientists, engineers, and entrepreneurs to apply the modern methods of acoustical physics to probe the unknown sea. The book is an authoritative, modern text with examples and exercises. It contains techniques to solve the direct problems, solutions of inverse problems, and an extensive bibliography from the earliest use of sound in the sea to present references.Written by internationally recognized scientists, the book provides background to measure ocean parameters and processes, find life and objects in the sea, communicate underwater, and survey the boundaries of the sea. Fundamentals of Acoustical Oceanography explains principles of underwater sound propagation, and describes how both actively probing sonars and passively listening hydrophones can reveal what the eye cannot see over vast ranges of the turbid ocean. This book demonstrates how to use acoustical remote sensing, variations in sound transmission, in situ acoustical measurements, and computer and laboratory models to identify the physical and biological parameters and processes in the sea.* Offers an integrated, modern approach to passive and active underwater acoustics* Contains many examples of laboratory scale models of ocean-acoustic environments, as well as descriptions of experiments at sea* Covers remote sensing of marine life and the seafloor* Includes signal processing of ocean sounds, physical and biological noises at sea, and inversions* resents sound sources, receivers, and calibration* Explains high intensities; explosive waves, parametric sources, cavitation, shock waves, and streaming* Covers microbubbles from breaking waves, rainfall, dispersion, and attenuation* Describes sound propagation along ray paths and caustics* Presents sound transmissions and normal mode methods in ocean waveguides