Download Free Scientific Plan For The Gewex Continental Scale International Project Gcip Book in PDF and EPUB Free Download. You can read online Scientific Plan For The Gewex Continental Scale International Project Gcip and write the review.

Efforts to understand climate variability and predict future climate change have highlighted many aspects of the hydrologic cycle and the exchange of energy and water at the atmosphere-surface interface as areas of critically needed study. The very nature of weather and climate demands that an international perspective and a comprehensive research approach be applied to understand these important issues. In response to this need, the international partners of the World Climate Research Program developed GEWEX (Global Energy and Water Experiment) as a major focus of international study. As the first of five continental-scale experiments, the GEWEX Continental Scale International Project (GCIP) was established to quantitatively assess the hydrologic cycle and energy fluxes of the Mississippi River basin. GCIP focuses on understanding the annual, interannual, and spatial variability of hydrology and climate within the Mississippi River basin; the development and evaluation of regional coupled hydrologic/atmospheric models; the development of data assimilation schemes; and the development of accessible, comprehensive databases. Improved water resource management on seasonal to interannual time scales is also a key GCIP goal. This book reviews the GCIP program, describes progress to date, and explores promising opportunities for future progress.
Water managers rely on predicting changes in the hydrologic cycle on seasonal-to-interannual time frames to prepare for water resource needs. Seasonal to interannual predictability of the hydrologic cycle is related to local and remote influences involving land processes and ocean processes, such as the El Niño Southern Oscillation. Although advances in understanding land-surface processes show promise in improving climate prediction, incorporating this information into water management decision processes remains a challenge since current models provide only limited information for predictions on seasonal and longer time scales. To address these needs, the Global Energy and Water Cycle Experiment (GEWEX) Americas Prediction Project (GAPP) was established in 2001 to improve how changes in water resources are predicted on intraseasonal-to-interannual time scales for the continental United States. The GAPP program has developed a science and implementation plan to guide its science activities, which describes strategies for improving prediction and decision support in the hydrologic sciences. This report by the National Research Council provides a review of the GAPP Science and Implementation Plan, outlining suggestions to strengthen the plan and the GAPP program overall.
Water vapor plays a vital role in shaping weather and climate on Earth. Hence, monitoring water vapor is critical if we are to explain and predict the behavior of the climate system. Unfortunately, measuring and analyzing water vapor on the time and space scales needed for this purpose have proven elusive. Therefore, it is appropriate and timely for the international climate research community, through the Global Energy and Water Cycle Experiment (GEWEX), to focus a project around water vapor. To this end, a GEWEX Global Water Vapor Project (GVaP) has been proposed, and draft Science and Implementation Plans have been developed. As requested by the U.S. Global Change Research Program (USGCRP), the National Research Council's (NRC) GEWEX Panel has reviewed these plans with an eye toward U.S. priorities.
The Global Energy and Water Cycle Experiment (GEWEX) Panel of the National Research Council (NRC) was tasked by the U.S. Global Change Research Program (USGCRP) to provide a rapid and succinct assessment to relevant agencies on the general merit of the GEWEX America Prediction Project (GAPP), as well as the Coordinated Enhanced Observing Period (CEOP). In addition, the panel was asked to provide guidance to the agencies on the relationships between the agencies' newly proposed hydrologic research activities, GAPP, and CEOP. Providing this guidance is critical, in part, because the federal agencies tend to have somewhat differing priorities across the wide span of GEWEX activities.