Download Free Science Et Technique Des Carbones Book in PDF and EPUB Free Download. You can read online Science Et Technique Des Carbones and write the review.

L’atome de carbone a un rôle clé. Il peut former plusieurs types de liaisons chimiques mais également s’auto-associer pour donner un squelette carboné, caractéristiques qui sont à la base de la chimie organique, de la biochimie et de la vie. Science et technique des carbones présente la progression des connaissances dans les solides carbonés à partir des découvertes et inventions successives depuis la préhistoire. Le rôle essentiel joué par l’exploitation des mines de charbon au moment de la première révolution industrielle comme source d’énergie primaire est un point crucial. L’importance du carbone s’est accrue par le développement de la carbochimie pour créer des matériaux artificiels. Leurs utilisations comme matériaux traditionnels de transformation en sidérurgie et comme céramiques particulières, puis technologiques (charbons actifs, fibres de carbone…), sont successivement décrites. La découverte récente des carbones moléculaires, fleurons de la nanotechnologie, met en exergue l’avènement de la technoscience. Finalement, leur impact économique et sociétal est analysé en exposant l’existence de grandes transitions énergétiques associées aux cycles macro-économiques.
Introduction to Carbon Science deals with various aspects of carbon science, from polymer science and prosthetics to crystallography, carbonization, spectroscopy, and surface science. Topics covered include the mechanisms of formation of isotropic and anisotropic carbons, physical properties of pitch relevant to the fabrication of carbon materials; kinetics and catalysis of carbon gasification; and porosity in carbons and graphites. Carbon fibers, cokes and composites, and coal to coke transformations are also discussed. This book is comprised of nine chapters and begins with an overview of the basic structural features of carbon materials, along with definitions of the various carbon forms encountered in carbon science. The principal techniques for studying the structure of solid carbons are also considered. The reader is then introduced to the mechanisms underlying the formation of isotropic and anisotropic carbons; the physicochemical changes that take place when pitch is pyrolyzed to carbon; and kinetics and catalysis of carbon gasification reactions. The following chapters explore various types of porosity in carbons and graphites; manufacture, properties, structure, and applications of carbon fibers; and mechanical properties of cokes and composites. This text concludes by describing the conversion of coal to coke. This monograph will be of interest to carbon scientists, technologists, and engineers, as well as those entering the field of carbon science for the first time.
This book provides information to the state of art of research in nanotechnology and nano medicine and risks of nano technology. It covers an interdisciplinary and very wide scope of the latest fundamental research status and industrial applications of nano technologies ranging from nano physics, nano chemistry to biotechnology and toxicology. It provides information to last legislation of nano usage and potential social impact too. The book contains also a reference list of major European research centers and associated universities offering licences and master of nano matter. For clarity and attractivity, the book has many illustrations and specific inserts to complete the understanding of the scientific texts.
Carbon solids have been utilized by man since prehistoric times, first as a source of heat and then for other purposes; these are used as key markers for different civilizations. The essential role played by the use of coal mines during the industrial revolution as a main source of energy is a crucial point, which was then expanded through the development of carbochemistry. This book begins by describing the use of solid carbons as traditional materials, for example in the steel industry and for ceramics, then moving on to their technological uses such as active carbons and carbon fibers, etc., before discussing nanocarbons, the jewel in the crown of contemporary technological science. The final chapter analyzes the current economic and social impact of carbon solids.
In recent years the Japanese have funded a comprehensive study of carbon materials which incorporate other elements including boron, nitrogen and fluorine, hence the title of the project "Carbon Alloys". Coined in 1992, the phrase "Carbon Alloys" can be applied to those materials mainly composed of carbon materials in multi-component systems. The carbon atoms of each component have a physical and/or chemical interactive relationship with other atoms or compounds. The carbon atoms of the components may have different hybrid bonding orbitals to create quite different carbon components. Eiichi Yasuda and his team consider the definition of Carbon Alloys, present the results of the Carbon Alloys projects, describe typical Carbon Alloys and their uses, discuss recent techniques for their characterization, and finally, illustrate potential applications and future developments for Carbon Alloy science. The book contains over thirty chapters on these studies from as many researchers. The most modern of techniques, particularly in the area of spectroscopy, were used as diagnostic tools, and many of these are applicable to pure carbons also. Porosity in carbons received considerable attention.
Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. - Focuses on characterization techniques for carbon materials - Authored by experts who are considered specialists in their respective techniques - Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials
Carbon nanotubes, with their extraordinary mechanical and unique electronic properties, have garnered much attention in the past five years. With a broad range of potential applications including nanoelectronics, composites, chemical sensors, biosensors, microscopy, nanoelectromechanical systems, and many more, the scientific community is more moti
Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite. - A progression from synthesis through modern carbonization techniques to applications gives you a thorough understanding of carbon materials - Covers a wide range of precursor materials, preparation techniques, and characteristics to inspire your own development of carbonization techniques, carbon materials and applications - Applications-oriented chapters include timely content on hot topics such as the engineering of carbon nanofibers and carbon materials for various energy-related applications
This book is a useful guide for researchers in ecology and earth science interested in the use of accelerator mass spectrometry technology. The development of research in radiocarbon measurements offers an opportunity to address the human impact on global carbon cycling and climate change. Presenting radiocarbon theory, history, applications, and analytical techniques in one volume builds a broad outline of the field of radiocarbon and its emergent role in defining changes in the global carbon cycle and links to climate change. Each chapter presents both classic and cutting-edge studies from different disciplines involving radiocarbon and carbon cycling. The book also includes a chapter on the history and discovery of radiocarbon, and advances in radiocarbon measurement techniques and radiocarbon theory. Understanding human alteration of the global carbon cycle and the link between atmospheric carbon dioxide levels and climate remains one of the foremost environmental problems at the interface of ecology and earth system science. Many people are familiar with the terms ‘global warming’ and ‘climate change’, but fewer are able to articulate the science that support these hypotheses. This book addresses general questions such as: what is the link between the carbon cycle and climate change; what is the current evidence for the fate of carbon dioxide added by human activities to the atmosphere, and what has caused past changes in atmospheric carbon dioxide? How can the radiocarbon and stable isotopes of carbon combined with other tools be used for quantifying the human impact on the global carbon cycle?