Download Free Science Education Issues And Developments Book in PDF and EPUB Free Download. You can read online Science Education Issues And Developments and write the review.

This book highlights recent developments in literacy research in science teaching and learning from countries such as Australia, Brazil, China, Finland, Germany, Hong Kong, New Zealand, Norway, Singapore, Spain, South Africa, Sweden, Taiwan, and the United States. It includes multiple topics and perspectives on the role of literacy in enhancing science teaching and learning, such as the struggles faced by students in science literacy learning, case studies and evaluations of classroom-based interventions, and the challenges encountered in the science classrooms. It offers a critical and comprehensive investigation on numerous emerging themes in the area of literacy and science education, including disciplinary literacy, scientific literacy, classroom discourse, multimodality, language and representations of science, and content and language integrated learning (CLIL). The diversity of views and research contexts in this volume presents a useful introductory handbook for academics, researchers, and graduate students working in this specialized niche area. With a wealth of instructional ideas and innovations, it is also highly relevant for teachers and teacher educators seeking to improve science teaching and learning through the use of literacy.
In contemporary society, science constitutes a significant part of human life in that it impacts on how people experience and understand the world and themselves. The rapid advances in science and technology, newly established societal and cultural norms and values, and changes in the climate and environment, as well as, the depletion of natural resources all greatly impact the lives of children and youths, and hence their ways of learning, viewing the world, experiencing phenomena around them and interacting with others. These changes challenge science educators to rethink the epistemology and pedagogy in science classrooms today as the practice of science education needs to be proactive and relevant to students and prepare them for life in the present and in the future. Featuring contributions from highly experienced and celebrated science educators, as well as research perspectives from Europe, the USA, Asia and Australia, this book addresses theoretical and practical examples in science education that, on the one hand, plays a key role in our understanding of the world, and yet, paradoxically, now acknowledges a growing number of uncertainties of knowledge about the world. The material is in four sections that cover the learning and teaching of science from science literacy to multiple representations; science teacher education; the use of innovations and new technologies in science teaching and learning; and science learning in informal settings including outdoor environmental learning activities. Acknowledging the issues and challenges in science education, this book hopes to generate collaborative discussions among scholars, researchers, and educators to develop critical and creative ways of science teaching to improve and enrich the lives of our children and youths.
This book features 35 of best papers from the 9th European Science Education Research Association Conference, ESERA 2011, held in Lyon, France, September 5th-9th 2011. The ESERA international conference featured some 1,200 participants from Africa, Asia, Australia, Europe as well as North and South America offering insight into the field at the end of the first decade of the 21st century. This book presents studies that represent the current orientations of research in science education and includes studies in different educational traditions from around the world. It is organized into six parts around the three poles (content, students, teachers) and their interrelations of science education: after a general presentation of the volume (first part), the second part concerns SSI (Socio-Scientific Issues) dealing with new types of content, the third the teachers, the fourth the students, the fifth the relationships between teaching and learning, and the sixth the teaching resources and the curricula.
Science Education Issues and Developments.
This book presents an international perspective of the influence of educational context on science education. The focus is on the interactions between curriculum development and implementation, particularly in non-Western and non-English-speaking contexts (i.e., outside the UK, USA, Australia, NZ, etc. ). An important and distinguishing feature of the book is that it draws upon the experiences and research from local experts from an extremely diverse cohort across the world (26 countries in total). The book addresses topics such as: curriculum development; research or evaluation of an implemented curriculum; discussion of pressures driving curriculum reform or implementation of new curricula (e. g., technology or environmental education); the influence of political, cultural, societal or religious mores on education; governmental or ministerial drives for curriculum reform; economic or other pressures driving curriculum reform; the influence of external assessment regimes on curriculum; and so on.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
This book discusses the scope of science education research and practice in Asia. It is divided into five sections: the first consists of nine chapters providing overviews of science education in Asia (China, Lebanon, Macau, Malaysia, Mongolia, Oman, Singapore, Taiwan, and Thailand). The second section offers chapters on content analysis of research articles, while the third includes three chapters on assessment and curriculum. The fourth section includes four chapters on innovative technology in science education; and the fifth section consists of four chapters on professional development, and informal learning. Each section also has additional chapters providing specific comments on the content. This collection of works provides readers with a starting point to better understand the current state of science education in Asia.
This book reviews the current state of theoretical accounts of the what and how of science learning in schools. The book starts out by presenting big-picture perspectives on key issues. In these first chapters, it focuses on the range of resources students need to acquire and refine to become successful learners. It examines meaningful learner purposes and processes for doing science, and structural supports to optimize cognitive engagement and success. Subsequent chapters address how particular purposes, resources and experiences can be conceptualized as the basis to understand current practices. They also show how future learning opportunities should be designed, lived and reviewed to promote student engagement/learning. Specific topics include insights from neuro-imaging, actor-network theory, the role of reasoning in claim-making for learning in science, and development of disciplinary literacies, including writing and multi-modal meaning-making. All together the book offers leads to science educators on theoretical perspectives that have yielded valuable insights into science learning. In addition, it proposes new agendas to guide future practices and research in this subject.
The goal of this volume of Research in Science Education is to examine the relationship between science education policy and practice and the special role that science education researchers play in influencing policy. It has been suggested that the science education research community is isolated from the political process, pays little attention to policy matters, and has little influence on policy. But to influence policy, it is important to understand how policy is made and how it is implemented. This volume sheds light on the intersection between policy and practice through both theoretical discussions and practical examples. This book was written primarily about science education policy development in the context of the highly decentralized educational system of the United States. But, because policy development is fundamentally a social activity involving knowledge, values, and personal and community interests, there are similarities in how education policy gets enacted and implemented around the world. This volume is meant to be useful to science education researchers and to practitioners such as teachers and administrators because it provides information about which aspects of the science education enterprise are affected by state, local, and national policies. It also provides helpful information for researchers and practitioners who wonder how they might influence policy. In particular, it points out how the values of people who are affected by policy initiatives are critical to the implementation of those policies.