Download Free Science Education From People For People Book in PDF and EPUB Free Download. You can read online Science Education From People For People and write the review.

How do people understand science? How do they feel about science, how do they relate to it, what do they hope from it and what do they fear about it? Science of the People: Understanding and using science in everyday contexts helps answer these questions as the result of painstaking interviewing by Professor Joan Solomon of all and sundry in a fairly typical small town. The result is a unique overview of how a very wide range of adults, united only by local geography, relate to science. Many of the findings run contrary to what is widely believed about how science is learnt and about how people view it. Chapters include: An Approach to Awareness Publics for Science? Ethics and Action Interpretation and Change Joan Solomon, who sadly died before this book could be published, enjoyed an international reputation in science education. After a long career teaching science in secondary schools she moved into the university sector and ending up holding chairs of science education at the Open University, King’s College London and the University of Plymouth. She was a world leader in her subject and inspired classroom teachers and wrote a number of very influential papers with some of them. She produced many important books, booklets and other resources to help science teachers and science educators get to grips with the history and philosophy of science and the teaching of energy, amongst other topics. This book is essential reading for those involved in Science education and educational policy.
Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.
Contributing to the social justice agenda of redefining what science is and what it means in the lives of real people, this book takes up the challenge of building an approach to science education from the standpoint of the learner. With this orientation to science and scientific literacy, science educators can begin to make inroads into the currently widespread irrelevance of science in the everyday lives of people.
Contributing to the social justice agenda of redefining what science is and what it means in the everyday lives of people, this book introduces science educators to various dimensions of viewing science and scientific literacy from the standpoint of the learner, engaged with real everyday concerns within or outside school; develops a new form of scholarship based on the dialogic nature of science as process and product; and achieves these two objectives in a readable but scholarly way. Opposing the tendency to teach and do research as if science, science education, and scientific literacy could be imposed from the outside, the authors want science education to be for people rather than strictly about how knowledge gets into their heads. Taking up the challenges of this orientation, science educators can begin to make inroads into the currently widespread irrelevance of science in the everyday lives of people. Utmost attention has been given to making this book readable by the people from whose lives the topics of the chapters emerge, all the while retaining academic integrity and high-level scholarship. Wolff Michael Roth has been awarded the Distinguished Contributions Award by The National Association for Research in Science Teaching, for his contributions to research in this field. He has also been elected to be the Fellow of the American Association for Advancement of Science (AAAS) and Fellow of the American Educational Research Association.
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
This book provides a comprehensive overview of humanistic approaches to science. Approaches that connect students to broader human concerns in their everyday life and culture. Glen Aikenhead, an expert in the field of culturally sensitive science education, summarizes major worldwide historical findings; focuses on present thinking; and offers evidence in support of classroom practice. This highly accessible text covers curriculum policy, teaching materials, teacher orientations, teacher education, student learning, culture studies, and future research.
First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€"to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.
There are many reasons to be curious about the way people learn, and the past several decades have seen an explosion of research that has important implications for individual learning, schooling, workforce training, and policy. In 2000, How People Learn: Brain, Mind, Experience, and School: Expanded Edition was published and its influence has been wide and deep. The report summarized insights on the nature of learning in school-aged children; described principles for the design of effective learning environments; and provided examples of how that could be implemented in the classroom. Since then, researchers have continued to investigate the nature of learning and have generated new findings related to the neurological processes involved in learning, individual and cultural variability related to learning, and educational technologies. In addition to expanding scientific understanding of the mechanisms of learning and how the brain adapts throughout the lifespan, there have been important discoveries about influences on learning, particularly sociocultural factors and the structure of learning environments. How People Learn II: Learners, Contexts, and Cultures provides a much-needed update incorporating insights gained from this research over the past decade. The book expands on the foundation laid out in the 2000 report and takes an in-depth look at the constellation of influences that affect individual learning. How People Learn II will become an indispensable resource to understand learning throughout the lifespan for educators of students and adults.
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
Understanding Young People's Science Aspirations offers new evidence and understanding about how young people develop their aspirations for education, learning and, ultimately, careers in science. Integrating new findings from a major research study with a wide ranging review of existing international literature, it brings a distinctive sociological analytic lens to the field of science education. The book offers an explanation of how some young people do become dedicated to follow science, and what might be done to increase and broaden this population, exploring the need for increased scientific literacy among citizens to enable them to exercise agency and lead a life underpinned by informed decisions about their own health and their environment. Key issues considered include: why we should study young people’s science aspirations the role of families, social class and science capital in career choice the links between ethnicity, gender and science aspirations the implications for research, policy and practice. Set in the context of widespread international policy concern about the urgent need to improve, increase and diversify participation in post-16 science, this key text considers how we must encourage a supply of appropriately qualified future scientists and workers in STEM industries and ensure a high level of scientific literacy in society. It is a crucial read for all training and practicing science teachers, education researchers and academics, as well as anyone invested in the desire to help fulfil young people’s science aspirations.