Download Free Science And Technology Of Concrete Admixtures Book in PDF and EPUB Free Download. You can read online Science And Technology Of Concrete Admixtures and write the review.

Science and Technology of Concrete Admixtures presents admixtures from both a theoretical and practical point-of-view. The authors emphasize key concepts that can be used to better understand the working mechanisms of these products by presenting a concise overview on the fundamental behavior of Portland cement and hydraulic binders as well as their chemical admixtures, also discussing recent effects in concrete in terms of rheology, mechanics, durability, and sustainability, but never forgetting the fundamental role played by the water/binder ratio and proper curing in concrete technology. Part One presents basic knowledge on Portland cement and concrete, while Part Two deals with the chemical and physical background needed to better understand what admixtures are chemically, and through which mechanism they modify the properties of the fresh and hardened concrete. Subsequent sections present discussions on admixtures technology and two particular types of concrete, self-consolidating and ultra-high strength concretes, with final remarks on their future. - Combines the knowledge of two leading authors to present both the scientific and technology of admixtures - Explains what admixtures are from a chemical point-of-view and illustrates by which mechanisms they modify the properties of fresh and hardened concrete - Presents a fundamental, practical, and innovative reference book on the topic - Contains three detailed appendices that can be used to learn how to use admixtures more efficiently
Since the publication of the first edition ten years ago, significant developments have occurred in the use of admixtures in concrete. Eight new chapters and a full update of the preceding ten chapters bring this book up to date; reflecting the relative advances made in the science and technology of different groups of admixtures. The increased role and development of admixtures in concrete technology is evidenced by a number of conferences, publications, and novel admixtures available in the market place. These developments in the field caused the modification of many chapters in the first edition in order to reflect the advances. Although individual chapters refer to standards and specifications of admixtures, those only interested in the standards or techniques used in investigating admixtures will find the second chapter (Research Technologies, Standards, and Specifications) useful. Admixtures are not as inert as may be presumed. They may chemically interact with the constituents of concrete and affect the properties of the fresh and hardened concrete and its durability. The third chapter deals with these aspects. It was important to devote a chapter to recent attempts in developing new admixtures.
Lea's Chemistry of Cement and Concrete deals with the chemical and physical properties of cements and concretes and their relation to the practical problems that arise in manufacture and use. As such it is addressed not only to the chemist and those concerned with the science and technology of silicate materials, but also to those interested in the use of concrete in building and civil engineering construction. Much attention is given to the suitability of materials, to the conditions under which concrete can excel and those where it may deteriorate and to the precautionary or remedial measures that can be adopted. First published in 1935, this is the fourth edition and the first to appear since the death of Sir Frederick Lea, the original author. Over the life of the first three editions, this book has become the authority on its subject. The fourth edition is edited by Professor Peter C. Hewlett, Director of the British Board of Agrement and visiting Industrial Professor in the Department of Civil Engineering at the University of Dundee. Professor Hewlett has brought together a distinguished body of international contributors to produce an edition which is a worthy successor to the previous editions.
In spite of the increasing use and demand for lightweight aggregate concrete (LWAC), there is still a lack of adequate explanations to understand the mechanisms responsible for the strength and durability properties of LWAC. This book is written to give an overall picture of LWAC, from the historical background, aggregate production, proportioning and production of concrete, to applications in structures. Physical properties and chemical durability are described in detail. The physical properties include density, strength, shrinkage, and elasticity. Chemical durability includes resistance to acids, chloride ingress, carbonation, and freeze-thaw resistance. Fire resistance is also included, which is seldom considered, but is a very important aspect of the safety of the structure. Microstructure development and its relation to the durability properties of LWAC generally are not highlighted in the literature. The development of bonds, the microstructure with different binder systems, and different types of lightweight aggregates are explained. They show how lightweight aggregate concrete differs from normal weight concrete. The chapters on chloride ingress and freeze-thaw resistance are detailed because of the use of LWAC in offshore construction. The economical aspects of using LWAC are also reviewed. Emphasis is placed on the fact that although the cost of LWAC is high, the total cost of construction has to be considered, including the cost of transport, reinforcement, etc. When these are considered then LWAC becomes cheaper and attractive. The life cycle cost of the concrete is another consideration for calculating long-term savings on maintenance costs.
Over the past two decades concrete has enjoyed a renewed level of research and testing, resulting in the development of many new types of concrete. Through the use of various additives, production techniques and chemical processes, there is now a great degree of control over the properties of specific concretes for a wide range of applications. New theories, models and testing techniques have also been developed to push the envelope of concrete as a building material. There is no current textbook which brings all of these advancements together in a single volume. This book aims to bridge the gap between the traditional concrete technologies and the emerging state-of-the-art technologies which are gaining wider use.
Supplementary cementing materials and other mineral admixtures are being used in increasing amounts in both cement and concrete. Their main technical benefits are that they enhance the workability of fresh concrete and the durability of hardened concrete. Indeed, they affect almost every property of the concrete. Their economic and ecological benef
Mortar and concrete made with portland cement has been a popular construction material in the world for the past 170 years or more. However, cement mortar and concrete have some disadvantages such as delayed hardening, low tensile strength, large drying shrinkage and low chemical resistance. To reduce these disadvantages, polymers have been utilized as an additive.Polymer-modified or polymer cement mortar (PCM) and concrete (PCC) are the materials which are made by partially replacing the cement hydrate binders of conventional cement mortar or concrete, with polymers. This book deals with the principles of polymer modification for cement composites, the process technology, properties and applications of the polymer-modified mortar and concrete, and special polymer-modified systems such as M DF cement, antiwashout underwater concrete, polymer-ferrocement, and artificial I wood.The polymeric admixtures or cement modifiers include latexes or emulsions, redispersible polymer powders, water-soluble polymers, liquid resins and monomers.This book describes the current knowledge and information of polymer-modified mortars and concretes, and discusses or reviews the following items in detail:1. Principles of polymer modification for cement composites.2. Process technology of polymer-modified mortars and concretes.3. Properties of polymer-modified mortars and concretes.4. Applications of polymer-modified mortars and concretes.5. Special polymer-modified systems such as MDF cements, antiwashout underwater concretes, polymer-ferrocements, and artificial woods.
This monograph describes cement clinker formation. It covers multicomponent systems, clinker phase structures and their reactions with water, hydrate composition and structure, as well as their physical properties. The mineral additions to cement are described as are their influence on cement-paste properties. Special cements are also discussed. The microstructure of concrete is then presented, and special emphasis is given to the role of the interfacial transition zone, and the corrosion processes in the light of cement-phase composition, mineral additions and w/c ratio. The admixtures' role in modern concrete technology is described with an emphasis on superplasticizer chemistry and its cement-paste rheological modification mechanism. Cement with atypical properties, such as calcium aluminate, white, low energy and expansive cements are characterized. The last part of the book is devoted to special types of concrete such as self compacting and to reactive powders.
Production of Portland cement is responsible for about seven percent of the world's greenhouse gas emissions. The pressure to make the production of concrete more sustainable, or "greener", is considerable and increasing. This requires a wholesale shift in processes, materials and methods in the concrete industry. Pure Portland cement will nee