Download Free Science And Engineering Of Casting Solidification Book in PDF and EPUB Free Download. You can read online Science And Engineering Of Casting Solidification and write the review.

The 3rd edition of this popular textbook covers current topics in all areas of casting solidification. Partial differential equations and numerical analysis are used extensively throughout the text, with numerous calculation examples, to help the reader in achieving a working knowledge of computational solidification modeling. The features of this new edition include: • new chapters on semi-solid and metal matrix composites solidification • a significantly extended treatment of multiscale modeling of solidification and its applications to commercial alloys • a survey of new topics such as solidification of multicomponent alloys and molecular dynamic modeling • new theories, including a theory on oxide bi-films in the treatment of shrinkage problems • an in-depth treatment of the theoretical aspects of the solidification of the most important commercial alloys including steel, cast iron, aluminum-silicon eutectics, and superalloys • updated tables of material constants.
Written by leading experts in their respective fields, Solidification and Casting provides a comprehensive review of topics fundamental to metallurgy and materials science as well as indicates recent trends. From an industrial perspective, the book begins with chapters on the casting techniques most commonly used in industry today. It then d
This text seeks to provide a comprehensive technical foundation and practical examples for casting process modelling technology. It highlights fundamental theory for solidification and useful applications for industrial production. It also details shape and ingot castings, semi-solid metalworking, and spray forming.
We come to know about the world in two distinctive ways: by direct perception and by application of rational reasoning which, in its highest form, is mathematical thinking. The belief that the underlying order of the world can be expressed in mathematical form lies at the very heart of science. In other words, we only know what we can describe through mathematical models. Casting of metals has evolved first as witchcraft, to gradually become an art, then a technology, and only recently a science. Many of the processes used in metal casting are still empirical in nature, but many others are deep-rooted in mathematics. In whatever form, casting of metals is an activity fundamental to the very existence of our world, as we know it today. Foundry reports indicate that solidification modeling is not only a cost-effective investment but also a major technical asset. It helps foundries move into markets with more complcx and technically demanding work. The ability to predict internal soundness allows foundries to improve quality and deliveries, and provides the information required to make key manufacturing decisions based on accurate cost estimates before pattern construction even begins. The acceptance of computational modeling of solidification by the industry is a direct result of the gigantic strides made by solidification science in the last two decades.
Solidification and Crystallization Processing in Metals and Alloys Hasse Fredriksson KTH, Royal Institute of Technology, Stockholm, Sweden Ulla Åkerlind University of Stockholm, Sweden Solidification or crystallization occurs when atoms are transformed from the disordered liquid state to the more ordered solid state, and is fundamental to metals processing. Conceived as a companion volume to the earlier works, Materials Processing during Casting (2006) and Physics of Functional Materials (2008), this book analyzes solidification and crystallization processes in depth. Starting from the thermodynamic point of view, it gives a complete description, taking into account kinetics and mass transfer, down to the final structure. Importantly, the book shows the relationship between the theory and the experimental results. Topics covered include: Fundamentals of thermodynamics Properties of interfaces Nucleation Crystal growth - in vapours, liquids and melts Heat transport during solidification processes Solidification structures - faceted, dendritic, eutectic and peritectic Metallic glasses and amorphous alloy melts Solidification and Crystallization Processing in Metals and Alloys features many solved examples in the text, and exercises (with answers) for students. Intended for Masters and PhD students as well as researchers in Materials Science, Engineering, Chemistry and Metallurgy, it is also a valuable resource for engineers in industry.
“Principles of Solidification” offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: • Detailed mathematical examples throughout to guide readers • Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors • Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.
This book deals with various science and technology factors that need careful consideration in producing a casting. It consists of 11 chapters contributed by experts in their respective fields. The topics include simulation of continuous casting process, control of solidification of continuous castings, influence of mold flux in continuous casting, segregation in strip casting of steel, developments in shell and solid investment mold processes, innovative pressure control during filling of sand molds, fracture toughness specifically of castings, permanent molding of cast iron, wear resistant castings and improvement of accuracy in estimating graphite nodularity in ductile iron castings.
This collection encompasses the following four areas: (1) Solidification processing: theoretical and experimental investigations of solidification processes including castings solidification, directional solidification of alloys, electromagnetic stirring, ultrasonic cavitation, mechanical vibration, active cooling and heating, powder bed-electron beam melting additive manufacturing, etc. for processing of metals, polymers and composite materials; (2) Microstructure Evolution: theoretical and experimental studies related to microstructure evolution of materials including prediction of solidification-related defects and particle pushing/engulfment aspects; (3) Novel Casting and Molding Processes: modeling and experimental aspects including high pressure die casting, permanent casting, centrifugal casting, low pressure casting, 3D silica sand mold printing, etc.; and (4) Cast Iron: all aspects related to cast iron characterization, computational and analytical modeling, and processing.
Direct strip casting is a continuous casting process for producing metallic sheet directly from the molten state that minimises the need for substantial secondary processing. This important book is the first to review the implications of strip casting technology for a range of alloys, including carbon and stainless steel, aluminium, magnesium, titanium, copper and other non-ferrous alloys.The book is divided into six chapters, with the first two describing the physical metallurgy of candidate alloys for direct strip casting and the development of microstructure during solidification. Chapter 3 describes the principles of continuous casting processes and the evolution of direct strip casting. It provides the foundation for the following two chapters which describe process variables and their impact on microstructure and strip quality. The final chapter describes possible techniques in secondary processing and fabrication of the as-cast strip. Two appendices discuss simulation and modelling issues, and the measurement and representation of textures in metal strip.Direct strip casting of metals and alloys is a standard reference on a technology destined to have a profound impact on the manufacturing landscape of the twenty-first century. - First book to review the implications of strip technology for a range of alloys - Essential book on a technology destined to have a profound impact on the manufacturing landscape of the twenty-first century
Casting of metals evolved first as witchcraft, gradually became an art, then technology, and became only recently a science. Many of the processes used in a metal casting are still empirical in nature, but many others are deeply rooted in mathematics. In whatever form, casting of metals is an activity fundamental in the very existence of our world, as we know it today. Foundry reports indicate that solidification modeling is not only a cost-effective investment but also a major technical asset. It helps foundries move into markets with more complex and technically demanding work. However, to the best of the author's knowledge, there have been no attempts to synthesize the information that can be used for engineering calculations pertinent to computational modeling of casting solidification. This book is based on the author's thirty years of experience with teaching, research and the industrial practice of solidification science as applied to casting processes. It is an attempt to describe solidification theory through the complex mathematical apparatus that includes partial differential equations and numerical analysis, which are required for a fundamental treatment of the problem. The mathematics, however, is restricted to the element essential to attain a working knowledge of the field. This is in line with the main goal of the book, which is to educate the reader in the fast moving area of computational modeling of solidification of casting. For the sake of completeness, a special effort has been made to introduce the reader to the latest developments in solidification theory, even if the reader has no engineering applications at this time. The text is designed to be self-contained. The author's teaching experience demonstrates that some of the students interested in solidification science are not fully proficient in partial differential equations (PDE) and/or numerical analysis. Accordingly, elements of PDE and numerical analysis, required to obtain a working knowledge of computational solidification modeling, have been introduced in the text while attempting to avoid the interruption of the fluency of the subject. Numerous modeling and calculation examples using the Excel spreadsheet as an engineering tool are provided. The book is addressed to graduate students and seniors in solidification science, as well as to industrial researchers who work in the field of solidification in general and casting modeling in particular.