Download Free School Science And Mathematics Book in PDF and EPUB Free Download. You can read online School Science And Mathematics and write the review.

Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--
Answering calls in recent reform documents to shape instruction in response to students’ ideas while integrating key concepts and scientific and/or mathematical practices, this text presents the concept of responsive teaching, synthesizes existing research, and examines implications for both research and teaching. Case studies across the curriculum from elementary school through adult education illustrate the variety of forms this approach to instruction and learning can take, what is common among them, and how teachers and students experience it. The cases include intellectual products of students’ work in responsive classrooms and address assessment methods and issues. Many of the cases are supplemented with online resources (http://www.studentsthinking.org/rtsm) including classroom video and extensive transcripts, providing readers with additional opportunities to immerse themselves in responsive classrooms and to see for themselves what these environments look and feel like.
The revised classic for designing mathematics and science professional development presents an updated planning framework and many professional development strategies and emphasizes continuous program monitoring and building professional cultures.
This book reflects on the continuing development of teacher noticing through an exploration of the latest research. The authors and editors seek to clarify the construct of teacher noticing and its related branches and respond to challenges brought forth in earlier research. The authors also investigate teacher noticing in multiple contexts and frameworks, including mathematics, science, international venues, and various age groups.
If your STEM lessons are falling on disinterested ears, it's time to mix things up. What you need are more engaging, brain-based science and math strategies to captivate your students' attention, activate their prior knowledge, and invigorate their interest. Blending current research on the student brain with practical methods for teaching science and math, John Almarode and Ann M. Miller identify six essential "ingredients" in a recipe for student success. In their book you'll discover A customizable framework you can use right away Classroom-ready, content-specific attention grabbers Overt and covert strategies to boost behavioral, emotional, and cognitive engagement Techniques for making relevant connections that maximize retention With this new approach to captivating STEM lessons, you'll energize classroom time and keep your students on task and engaged-every day.
Empower students to be the change—join the teaching mathematics for social justice movement! We live in an era in which students have —through various media and their lived experiences— a more visceral experience of social, economic, and environmental injustices. However, when people think of social justice, mathematics is rarely the first thing that comes to mind. Through model lessons developed by over 30 diverse contributors, this book brings seemingly abstract high school mathematics content to life by connecting it to the issues students see and want to change in the world. Along with expert guidance from the lead authors, the lessons in this book explain how to teach mathematics for self- and community-empowerment. It walks teachers step-by-step through the process of using mathematics—across all high school content domains—as a tool to explore, understand, and respond to issues of social injustice including: environmental injustice; wealth inequality; food insecurity; and gender, LGBTQ, and racial discrimination. This book features: Content cross-referenced by mathematical concept and social issues Downloadable instructional materials for student use User-friendly and logical interior design for daily use Guidance for designing and implementing social justice lessons driven by your own students’ unique passions and challenges Timelier than ever, teaching mathematics through the lens of social justice will connect content to students’ daily lives, fortify their mathematical understanding, and expose them to issues that will make them responsive citizens and leaders in the future.
This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.
How can curriculum integration of school science with the related disciplines of technology, engineering and mathematics (STEM) enhance students’ skills and their ability to link what they learn in school with the world outside the classroom? Featuring actual case studies of teachers’ attempts to integrate their curriculum, their reasons for doing so, how they did it, and their reflections on the outcomes, this book encourages science educators to consider the purposes and potential outcomes of this approach and raises important questions about the place of science in the school curriculum. It takes an honest approach to real issues that arise in curriculum integration in a range of education contexts at the elementary and middle school levels. The clear documentation and critical analysis of the contribution of science in curriculum integration—its implementation and its strengths and weaknesses—will assist teachers, science educators, and researchers to understand how this approach can work to engage students and improve their learning, as well as how it does not happen easily, and how various factors can facilitate or hinder successful integration.