Download Free Scheduling Theory Book in PDF and EPUB Free Download. You can read online Scheduling Theory and write the review.

Focusing on theory and applications of scheduling, the applications are drawn primarily from production and manufacturing environments, but state principles that are relevant to other settings as well. The broad range of topics includes deterministic and stochastic models.
This new edition of the well established text Scheduling - Theory, Algorithms, and Systems provides an up-to-date coverage of important theoretical models in the scheduling literature as well as significant scheduling problems that occur in the real world. It again includes supplementary material in the form of slide-shows from industry and movies that show implementations of scheduling systems. The main structure of the book as per previous edition consists of three parts. The first part focuses on deterministic scheduling and the related combinatorial problems. The second part covers probabilistic scheduling models; in this part it is assumed that processing times and other problem data are random and not known in advance. The third part deals with scheduling in practice; it covers heuristics that are popular with practitioners and discusses system design and implementation issues. All three parts of this new edition have been revamped and streamlined. The references have been made completely up-to-date. Theoreticians and practitioners alike will find this book of interest. Graduate students in operations management, operations research, industrial engineering, and computer science will find the book an accessible and invaluable resource. Scheduling - Theory, Algorithms, and Systems will serve as an essential reference for professionals working on scheduling problems in manufacturing, services, and other environments. Reviews of third edition: This well-established text covers both the theory and practice of scheduling. The book begins with motivating examples and the penultimate chapter discusses some commercial scheduling systems and examples of their implementations." (Mathematical Reviews, 2009)
Scheduling theory is an important branch of operations research. Problems studied within the framework of that theory have numerous applications in various fields of human activity. As an independent discipline scheduling theory appeared in the middle of the fifties, and has attracted the attention of researchers in many countries. In the Soviet Union, research in this direction has been mainly related to production scheduling, especially to the development of automated systems for production control. In 1975 Nauka ("Science") Publishers, Moscow, issued two books providing systematic descriptions of scheduling theory. The first one was the Russian translation of the classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both. books well represent major results known by that time, contain an exhaustive bibliography on the subject. Thus, the books, as well as the Russian translation of Computer and Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to the development of scheduling theory in the Soviet Union. Many different models, the large number of new results make it difficult for the researchers who work in related fields to follow the fast development of scheduling theory and to master new methods and approaches quickly.
An increasing interest to scheduling theory can be attributed to the high level of automation of all branches of human activity. The quality of modern production essentially depends on the planning decisions taken at different stages of a production process. Moreover, while the quality of these decisions is improving, the time and flexibility requirements for decision-making are becoming more important. All this stimulates scheduling research. Started as an independent discipline in the early fifties, it now has become an important branch of operations research. In the eighties, the largest Russian publishing house for scientific literature Nauka Publishers, Moscow, issued two books by a group of Byelorussian mathematicians: Scheduling Theory. Single-Stage Systems by V. S. Tanaev, V. S. Gordon and Y. M. Shafransky (1984) and Scheduling Theory. Multi-Stage Systems by V. S. Tanaev, Y. N. Sotskov and V. A. Strusevich (1989). Originally published in Russian, these two books cover two different major problem areas of scheduling theory and can be considered as a two-volume monograph that provides a systematic and comprehensive exposition of the subject. The authors are grateful to Kluwer Academic Publishers for creating the opportunity to publish the English translations of these two books. We are indebted to M. Hazewinkel, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys and W. Szwarc for their supporting the idea of translating the books into English.
This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.
Repetitive Project Scheduling: Theory and Methods is the first book to comprehensively, and systematically, review new methods for scheduling repetitive projects that have been developed in response to the weaknesses of the most popular method for project scheduling, the Critical Path Method (CPM). As projects with significant levels of repetitive scheduling are common in construction and engineering, especially construction of buildings with multiple stories, highways, tunnels, pipelines, power distribution networks, and so on, the book fills a much needed gap, introducing the main repetitive project scheduling methods, both comprehensively and systematically. Users will find valuable information on core methodologies, including how to identify the controlling path and controlling segment, how to convert RSM to a network model, and examples based on practical scheduling problems. - Introduces the repetitive scheduling method with analysis of the pros and cons, as well as the latest developments - Discusses the two basic theoretical topics, identifying the controlling path and transferring the RSM to a network model - Focuses on practical problems and algorithms - Provides an essential resource for researchers, managers, and engineers in the field of engineering project and construction management
Besides scheduling problems for single and parallel machines and shop scheduling problems, the book covers advanced models involving due-dates, sequence dependent change-over times and batching. A discussion of multiprocessor task scheduling and problems with multi-purpose machines is accompanied by the methods used to solve such problems, such as polynomial algorithms, dynamic programming procedures, branch-and-bound algorithms and local search heuristics, and the whole is rounded off with an analysis of complexity issues.
Time-dependent scheduling involves problems in which the processing times of jobs depend on when those jobs are started. This book is a comprehensive study of complexity results and optimal and suboptimal algorithms concerning time-dependent scheduling in single-, parallel- and dedicated-machine environments. In addition to complexity issues and exact or heuristic algorithms which are typically presented in scheduling books, the author also includes more advanced topics such as matrix methods in time-dependent scheduling, and time-dependent scheduling with two criteria. The reader should be familiar with basic notions of calculus, discrete mathematics and combinatorial optimization theory, while the book offers introductory material on NP-complete problems, and the basics of scheduling theory. The author includes numerous examples, figures and tables, he presents different classes of algorithms using pseudocode, and he completes the book with an extensive bibliography, and author, symbol and subject indexes. The book is suitable for researchers working on scheduling, problem complexity, optimization, heuristics and local search algorithms.
Introduction to deterministic scheduling theory; Algorithms for minimal-length schedulesComplexity of sequencing problems; Enumerative and iterative computationsl approaches.
Multidisciplinary Scheduling: Theory and Applications is a volume of nineteen reviewed papers that were selected from the sixty-seven papers presented during the First Multidisciplinary International Conference of Scheduling (MISTA). This is the initial volume of MISTA—the primary forum on interdisciplinary research on scheduling research. Each paper in the volume has been rigorously reviewed and carefully copyedited to ensure its readability. The MISTA volume focuses on the following leading edge topics: Fundamentals of Scheduling, Multi-Criteria Scheduling, Personnel Scheduling, Scheduling in Space, Scheduling the Internet, Machine Scheduling, Bin Packing, Educational Timetabling, Sports Scheduling, and Transport Scheduling.