Download Free Scanning Probe Microscopy Of Soft Matter Book in PDF and EPUB Free Download. You can read online Scanning Probe Microscopy Of Soft Matter and write the review.

Well-structured and adopting a pedagogical approach, this self-contained monograph covers the fundamentals of scanning probe microscopy, showing how to use the techniques for investigating physical and chemical properties on the nanoscale and how they can be used for a wide range of soft materials. It concludes with a section on the latest techniques in nanomanipulation and patterning. This first book to focus on the applications is a must-have for both newcomers and established researchers using scanning probe microscopy in soft matter research. From the contents: * Atomic Force Microscopy and Other Advanced Imaging Modes * Probing of Mechanical, Thermal Chemical and Electrical Properties * Amorphous, Poorly Ordered and Organized Polymeric Materials * Langmuir-Blodgett and Layer-by-Layer Structures * Multi-Component Polymer Systems and Fibers * Colloids and Microcapsules * Biomaterials and Biological Structures * Nanolithography with Intrusive AFM Tipand Dip-Pen Nanolithography * Microcantilever-Based Sensors
This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.
Techniques of nanoscale functional imaging and spectroscopy have blossomed since the invention of scanning probe microscopy (SPM) tools, starting with scanning tunneling microscopy in the early 1980s. The ability to resolve topographical features with nanoscale—sometimes atomic—precision has revolutionized our understanding of molecules, matter, and living systems. These observations have led scientists to pose increasingly more complex questions about properties beyond morphology and their evolution upon external stimuli. Overall, SPM-based schemes provide versatile ways to probe structural, electrical, mechanical, and chemical properties of materials at the nanoscale. Getting started with SPM can be intimidating. This digital primer aims to provide undergraduate and graduate students majoring in various fields of science and engineering with a practical guide to grasp essential concepts and principles related to SPM image and spectra formation and their interpretation. This guide may also be helpful to researchers who are considering new ways of evaluating nanoscale properties of materials, devices, or living systems as applicable to their respective fields. Because of the extensive literature on the developments and applications of SPM, it was impossible to comprehensively cover all aspects of the field. Hence, deliberate choices were made to emphasize some techniques that have not been discussed as extensively in the literature but hold great promise to understand complex systems at the nanoscale.
This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.
Brings a fresh point of view to the current state of correlative imaging and the future of the field This book provides contributions from international experts on correlative imaging, describing their vision of future developments in the field based on where it is today. Starting with a brief historical overview of how the field evolved, it presents the latest developments in microscopy that facilitate the correlative workflow. It also discusses the need for an ideal correlative probe, applications in proteomic and elemental analysis, interpretation methods, and how correlative imaging can incorporate force microscopy, soft x-ray tomography, and volume electron microscopy techniques. Work on placing individual molecules within cells is also featured. Correlative Imaging: Focusing on the Future offers in-depth chapters on: correlative imaging from an LM perspective; the importance of sample processing for correlative imaging; correlative light and volume EM; correlation with scanning probe microscopies; and integrated microscopy. It looks at: cryo-correlative microscopy; correlative cryo soft X-ray imaging; and array tomography. Hydrated-state correlative imaging in vacuo, correlating data from different imaging modalities, and big data in correlative imaging are also considered. Brings a fresh view to one of the hottest topics within the imaging community: the correlative imaging field Discusses current research and offers expert thoughts on the field’s future developments Presented by internationally-recognized editors and contributors with extensive experience in research and applications Of interest to scientists working in the fields of imaging, structural biology, cell biology, developmental biology, neurobiology, cancer biology, infection and immunity, biomaterials and biomedicine Part of the Wiley–Royal Microscopical Society series Correlative Imaging: Focusing on the Future will appeal to those working in the expanding field of the biosciences, correlative microscopy and related microscopic areas. It will also benefit graduate students working in microscopy, as well as anyone working in the microscopy imaging field in biomedical research.
Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.
Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries. The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography. The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends.
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Filling a gap in the literature, this book features in-depth discussions on amplitude modulation AFM, providing an overview of the theory, instrumental considerations and applications of the technique in both academia and industry. As such, it includes examples from material science, soft condensed matter, molecular biology, and biophysics, among others. The text is written in such a way as to enable readers from different backgrounds and levels of expertise to find the information suitable for their needs.
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.