Download Free Scale Relativity And Fractal Space Time A New Approach To Unifying Relativity And Quantum Mechanics Book in PDF and EPUB Free Download. You can read online Scale Relativity And Fractal Space Time A New Approach To Unifying Relativity And Quantum Mechanics and write the review.

This book provides a comprehensive survey of the state-of-the-art in the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system. In the framework of such a newly-generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that goes beyond and integrates the classical and the quantum regimes. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
This is the first detailed account of a new approach to microphysics based on two leading ideas: (i) the explicit dependence of physical laws on scale encountered in quantum physics, is the manifestation of a fundamental principle of nature, scale relativity. This generalizes Einstein's principle of (motion) relativity to scale transformations; (ii) the mathematical achievement of this principle needs the introduction of a nondifferentiable space-time varying with resolution, i.e. characterized by its fractal properties.The author discusses in detail reactualization of the principle of relativity and its application to scale transformations, physical laws which are explicitly scale dependent, and fractals as a new geometric description of space-time.
Translated into English for the first time, this brilliant French bestseller by eminent astrophysicist Laurent Nottale presents the theory of scale relativity, which offers a framework for the unification of quantum theory and relativity through fractal geometry. Updated and revised, with a new afterword by philosopher of science Charles Alunni, The Relativity of All Things is the first of Nottale's popularly accessible works available to English-language readers."To describe the ideas of relativity and quantum mechanics without a single mathematical formula is a veritable feat of magic. . . . With a philosophical audacity that only non-philosophers can possess, Nottale finds that the essence of the principle of relativity is in fact the affirmation of the existence of universal laws applied at every scale. . . . His task is enormous. He proposes that the theory of relativity and that of quantum mechanics, with the radical schism between their findings and methods of thinking, can be reconciled. . . . Nottale's methodological innovation is truly revolutionary. To bring it to fruition, he weds the mathematics of fractals with the theory of relativity. . . . Nottale's approach shows us that we are far from the 'end of science': we are perhaps only at its recommencement." Basarab Nicolescu, Business Digest"Einstein himself explicitly considered that a realistic approach to the quantum problem could go through the introduction of non-differentiability in physics. In 1948, he wrote in a letter to Wolfgang Pauli: 'Maybe someone will find out another possibility, provided he searches with enough perseverance.' Laurent Nottale is very precisely this 'someone'! Read and study this wonderful theory, let yourself be carried away by its beauty, its depth, and its major experimental implications, which are nothing less than fundamental for the future of science, and for philosophy." Charles Alunni, Director, Laboratoire Disciplinaire Pensée des Sciences at the École Normale Supérieure"Since the birth of quantum theory, physicists have been challenged with the development of a unified theory of quantum mechanics and relativity, with no general consensus on the best way forward. To progress further, we have to confront deep questions about space and time, quantum theory, and cosmology, which take theory back into contact with experiment. The theory of scale relativity offers a serious contribution to the debate on unification, offering an intuitive insight into how these theories could be fundamentally linked through space-time geometry." Philip Turner, Director, Centre for Plant Science and Biopolymer Research, Edinburgh Napier University"Laurent Nottale proposes that we look at the concept of fractals to make relativity, extended further yet, the fundamental principle on which to base quantum mechanics. After the relativity of time and space, he has tackled the relativity of scale, putting into question much of what we thought we knew." Pierre Bonnaure, Futuribles"Developments in geometry have often enabled progress in physics, especially when concerning relativity. Non-Euclidean geometry, geometrical systems where the plane is a sphere, made it possible for Einstein to devise his theory of curved space. Today, a new geometry, fractal geometry, allows us to propose a theory of fractal space." Idées clés, by Business Digest
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
Provides a comprehensive survey of the state-of-the-art in the development of the relativity theory of scales Transcends and integrates the classical and the quantum regimes Enables quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system Collects and organizes developments and applications from diverse fields for easy reference
This book has two sections. The section Selected Topics in Applications of Quantum Mechanics provides seven chapters about different applications of quantum mechanics in science and technology. The section Selected Topics in Foundations of Quantum Mechanics provides seven chapters about the foundations of quantum mechanics. This book is written by a community of expert scientists from different research institutes and universities from all over the world. Without a doubt, quantum mechanics is the greatest discovery of the 20th century. Therefore, its history and foundations are of great interest to scientists and students. This book covers some of the applications of quantum mechanics in nuclear physics, medical science, information technology, atomic physics and material science, as well as selected topics of quantum mechanics through different bases and ideas about quantum mechanics. The basic idea of the publication of this book is to make scientists and researchers, as well as graduate students, familiar with the foundations of quantum mechanics.
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincaré disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
Gathering the proceedings of the 12th CHAOS2019 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.
This volume deals with extensions of special relativity, general relativity, and their applications in relation to intragalactic and extragalactic dynamics. The book comprises chapters authored by various researchers and edited by an expert active in the relativity research area. It provides a thorough overview of the latest research efforts by international authors on relativity, opening new possible research paths for further novel developments.
In this fascinating journey to the edge of science, Vidal takes on big philosophical questions: Does our universe have a beginning and an end or is it cyclic? Are we alone in the universe? What is the role of intelligent life, if any, in cosmic evolution? Grounded in science and committed to philosophical rigor, this book presents an evolutionary worldview where the rise of intelligent life is not an accident, but may well be the key to unlocking the universe's deepest mysteries. Vidal shows how the fine-tuning controversy can be advanced with computer simulations. He also explores whether natural or artificial selection could hold on a cosmic scale. In perhaps his boldest hypothesis, he argues that signs of advanced extraterrestrial civilizations are already present in our astrophysical data. His conclusions invite us to see the meaning of life, evolution and intelligence from a novel cosmological framework that should stir debate for years to come.