Download Free Scale Effects In Animal Locomotion Book in PDF and EPUB Free Download. You can read online Scale Effects In Animal Locomotion and write the review.

How can geckoes walk on the ceiling and basilisk lizards run over water? What are the aerodynamic effects that enable small insects to fly? What are the relative merits of squids' jet-propelled swimming and fishes' tail-powered swimming? Why do horses change gait as they increase speed? What determines our own vertical leap? Recent technical advances have greatly increased researchers' ability to answer these questions with certainty and in detail. This text provides an up-to-date overview of how animals run, walk, jump, crawl, swim, soar, hover, and fly. Excluding only the tiny creatures that use cilia, it covers all animals that power their movements with muscle--from roundworms to whales, clams to elephants, and gnats to albatrosses. The introduction sets out the general rules governing all modes of animal locomotion and considers the performance criteria--such as speed, endurance, and economy--that have shaped their selection. It introduces energetics and optimality as basic principles. The text then tackles each of the major modes by which animals move on land, in water, and through air. It explains the mechanisms involved and the physical and biological forces shaping those mechanisms, paying particular attention to energy costs. Focusing on general principles but extensively discussing a wide variety of individual cases, this is a superb synthesis of current knowledge about animal locomotion. It will be enormously useful to advanced undergraduates, graduate students, and a range of professional biologists, physicists, and engineers.
How can geckoes walk on the ceiling and basilisk lizards run over water? What are the aerodynamic effects that enable small insects to fly? What are the relative merits of squids' jet-propelled swimming and fishes' tail-powered swimming? Why do horses change gait as they increase speed? What determines our own vertical leap? Recent technical advances have greatly increased researchers' ability to answer these questions with certainty and in detail. This text provides an up-to-date overview of how animals run, walk, jump, crawl, swim, soar, hover, and fly. Excluding only the tiny creatures that use cilia, it covers all animals that power their movements with muscle--from roundworms to whales, clams to elephants, and gnats to albatrosses. The introduction sets out the general rules governing all modes of animal locomotion and considers the performance criteria--such as speed, endurance, and economy--that have shaped their selection. It introduces energetics and optimality as basic principles. The text then tackles each of the major modes by which animals move on land, in water, and through air. It explains the mechanisms involved and the physical and biological forces shaping those mechanisms, paying particular attention to energy costs. Focusing on general principles but extensively discussing a wide variety of individual cases, this is a superb synthesis of current knowledge about animal locomotion. It will be enormously useful to advanced undergraduates, graduate students, and a range of professional biologists, physicists, and engineers.
This study takes a broad and timely approach to animal movement across both temporal and spatial scales. Movement and migration on land, in the air, and in water are pervading features of animal life-from the smallest protozoans to the largest whales - and can extend from millimetres to global scale. Research into animal movement ecology is now entering a new era with the development of novel molecular, electronic, and technical methods that make it possible to analyse the movements of individual animals under complex environmental conditions that determine the evolution of movement habits.
This book provides a clear foundation, based on physical biology and biomechanics, for understanding the underlying mechanisms by which animals have evolved to move in their physical environment. It integrates the biomechanics of animal movement with the physiology of animal energetics and the neural control of locomotion. The author also communicates a sense of the awe and fascination that comes from watching the grace, speed, and power of animals in motion. Movement is a fundamental distinguishing feature of animal life, and a variety of extremely effective mechanical and physiological designs have evolved. Common themes are observed for the ways in which animals successfully contend with the properties of a given physical environment across diversity of life forms and varying locomotor modes. Understanding the common principles of design that span a diverse array of animals requires a broad comparative and integrative approach to their study. This theme persists throughout the book, as various modes and mechanisms of animal locomotion are covered. Since an animal's size is equally critical to its functional design, the effects of scale on locomotor energetics and mechanics are also discussed. Biewener begins by examining the underlying machinery for movement: skeletal muscles used for force generation, skeletons used for force transmission, and spring-like elements used for energy savings. He then describes the basic mechanisms that animals have evolved to move over land, in and on the surface of the water, and in the air. Common fluid dynamic principles are discussed as background to both swimming and flight. In addition to discussing the locomotor mechanisms of complex animals, the locomotor movement of single cells is also covered. Common biochemical features of cellular metabolism are then reviewed before discussing the energetic aspects of various locomotor modes. Strategies for conserving energy and moving economically are again highlighted in this section of the book. Emphasis is placed on comparisons of energetic features across locomotor modes. The book concludes with a discussion of the neural control of animal locomotion. The basic neurosensory and motor elements common to vertebrates and arthropods are discussed, and features of sensori-motor organization and function are highlighted. These are then examined in the context of specific examples of how animals control the rhythmic patterns of limb and body movement that underlie locomotor function and stability.
Animals have evolved remarkable biomechanical and physiological systems that enable their rich repertoire of motion. Animal Locomotion offers a fundamental understanding of animal movement through a broad comparative and integrative approach, including basic mathematics and physics, examination of new and enduring literature, consideration of classic and cutting-edge methods, and a strong emphasis on the core concepts that consistently ground the dizzying array of animal movements. Across scales and environments, this book integrates the biomechanics of animal movement with the physiology of animal energetics and the neural control of locomotion. This second edition has been thoroughly revised, incorporating new content on non-vertebrate animal locomotor systems, studies of animal locomotion that have inspired robotic designs, and a new chapter on the use of evolutionary approaches to locomotor mechanisms and performance.
The physical principles of swimming and flying in animals are intriguingly different from those of ships and airplanes. The study of animal locomotion therefore holds a special place not only at the frontiers of pure fluid dynamics research, but also in the applied field of biomimetics, which aims to emulate salient aspects of the performance and function of living organisms. For example, fluid dynamic loads are so significant for swimming fish that they are expected to have developed efficient flow control procedures through the evolutionary process of adaptation by natural selection, which might in turn be applied to the design of robotic swimmers. And yet, sharply contrasting views as to the energetic efficiency of oscillatory propulsion – especially for marine animals – demand a careful assessment of the forces and energy expended at realistic Reynolds numbers. For this and many other research questions, an experimental approach is often the most appropriate methodology. This holds as much for flying animals as it does for swimming ones, and similar experimental challenges apply – studying tethered as opposed to free locomotion, or studying the flow around robotic models as opposed to real animals. This book provides a wide-ranging snapshot of the state-of-the-art in experimental research on the physics of swimming and flying animals. The resulting picture reflects not only upon the questions that are of interest in current pure and applied research, but also upon the experimental techniques that are available to answer them.
In very general terms, "scaling" can be defined as the structural and func tional consequences of differences in size (or scale) among organisms of more or less similar design. Interest in certain aspects of body size and scaling in primate biology (e. g. , relative brain size) dates to the turn of the century, and scientific debate and dialogue on numerous aspects of this general subject have continued to be a primary concern of primatologists, physical an thropologists, and other vertebrate biologists up to the present. Indeed, the intensity and scope of such research on primates have grown enormously in the past decade or so. Information continues to accumulate rapidly from many different sources, and the task of synthesizing the available data and theories on any given topic is becoming increasingly formidable. In addition to the formal exchange of new ideas and information among scientific experts in specific areas of scaling research, two of the major goals of this volume are an assessment of our progress toward understanding various size-related phe nomena in primates and the identification of future prospects for continuing advances in this realm. Although the subject matter and specific details of the issues considered in the 20 chapters that follow are very diversified, all topics share the same fundamental and unifying biological theme: body size variation in primates and its implications for behavior and ecology, anatomy and physiology, and evolution.
This book is about the importance of animal size. We tend to think of animal function in chemical terms and talk of water, salts, proteins, enzymes, oxygen, energy, and so on. We should not forget, however, that physical laws are equally important, for they determine rates of diffusion and heat transfer, transfer of force and momentum, the strength of structures, the dynamics of locomotion, and other aspects of the functioning of animal bodies. Physical laws provide possibilities and opportunities for an organism, yet they also impose constraints, setting limits to what is physically possible. This book aims to give an understanding of these rules because of their profound implications when we deal with animals of widely different size and scale. The reader will find that the book raises many questions. Remarkable and puzzling information makes it read a little like a detective story, but the last chapter, instead of giving the final solution, neither answers all questions nor provides one great unifying principle.
This volume examines the extent to which the design and function of terrestrial and aquatic animals are determined by the physicochemical properties of the media in which they live. The topic is addressed from the viewpoint of scientists representing a variety of disciplines and approaches. Anatomists, biochemists, biophysicists, physiologists and zoologists each contribute their perspectives. The general topics examined include: respiration; acid base balance; osmoregulation; water and ionic exchanges; nutrient acquisition and absorption; nitrogen and sulfur metabolism; locomotion; sensory information and behaviour; energy metabolism; and temperature and evolution. Four or five papers deal with each of these general topics.