Download Free Scalable Compatibility For Embedded Real Time Components Via Language Progressive Timed Automata Book in PDF and EPUB Free Download. You can read online Scalable Compatibility For Embedded Real Time Components Via Language Progressive Timed Automata and write the review.

The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis.
Developing rich Web applications can be a complex job - especially when it comes to mobile device support. Web-based environments such as Lively Webwerkstatt can help developers implement such applications by making the development process more direct and interactive. Further the process of developing software is collaborative which creates the need that the development environment offers collaboration facilities. This report describes extensions of the webbased development environment Lively Webwerkstatt such that it can be used in a mobile environment. The extensions are collaboration mechanisms, user interface adaptations but as well event processing and performance measuring on mobile devices.
Together with industrial partners Hasso-Plattner-Institut (HPI) is currently establishing a “HPI Future SOC Lab,” which will provide a complete infrastructure for research on on-demand systems. The lab utilizes the latest, multi/many-core hardware and its practical implementation and testing as well as further development. The necessary components for such a highly ambitious project are provided by renowned companies: Fujitsu and Hewlett Packard provide their latest 4 and 8-way servers with 1-2 TB RAM, SAP will make available its latest Business byDesign (ByD) system in its most complete version. EMC² provides high performance storage systems and VMware offers virtualization solutions. The lab will operate on the basis of real data from large enterprises. The HPI Future SOC Lab, which will be open for use by interested researchers also from other universities, will provide an opportunity to study real-life complex systems and follow new ideas all the way to their practical implementation and testing. This technical report presents results of research projects executed in 2011. Selected projects have presented their results on June 15th and October 26th 2011 at the Future SOC Lab Day events.
Cost models are an essential part of database systems, as they are the basis of query performance optimization. Based on predictions made by cost models, the fastest query execution plan can be chosen and executed or algorithms can be tuned and optimised. In-memory databases shifts the focus from disk to main memory accesses and CPU costs, compared to disk based systems where input and output costs dominate the overall costs and other processing costs are often neglected. However, modelling memory accesses is fundamentally different and common models do not apply anymore. This work presents a detailed parameter evaluation for the plan operators scan with equality selection, scan with range selection, positional lookup and insert in in-memory column stores. Based on this evaluation, a cost model based on cache misses for estimating the runtime of the considered plan operators using different data structures is developed. Considered are uncompressed columns, bit compressed and dictionary encoded columns with sorted and unsorted dictionaries. Furthermore, tree indices on the columns and dictionaries are discussed. Finally, partitioned columns consisting of one partition with a sorted and one with an unsorted dictionary are investigated. New values are inserted in the unsorted dictionary partition and moved periodically by a merge process to the sorted partition. An efficient attribute merge algorithm is described, supporting the update performance required to run enterprise applications on read-optimised databases. Further, a memory traffic based cost model for the merge process is provided.
The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution.
Enacting business processes in process engines requires the coverage of control flow, resource assignments, and process data. While the first two aspects are well supported in current process engines, data dependencies need to be added and maintained manually by a process engineer. Thus, this task is error-prone and time-consuming. In this report, we address the problem of modeling processes with complex data dependencies, e.g., m:n relationships, and their automatic enactment from process models. First, we extend BPMN data objects with few annotations to allow data dependency handling as well as data instance differentiation. Second, we introduce a pattern-based approach to derive SQL queries from process models utilizing the above mentioned extensions. Therewith, we allow automatic enactment of data-aware BPMN process models. We implemented our approach for the Activiti process engine to show applicability.