Download Free Scalable And Reliable Inference For Probabilistic Modeling Book in PDF and EPUB Free Download. You can read online Scalable And Reliable Inference For Probabilistic Modeling and write the review.

Probabilistic modeling, as known as probabilistic machine learning, provides a principled framework for learning from data, with the key advantage of offering rigorous solutions for uncertainty quantification. In the era of big and complex data, there is an urgent need for new inference methods in probabilistic modeling to extract information from data effectively and efficiently. This thesis shows how to do theoretically-guaranteed scalable and reliable inference for modern machine learning. Considering both theory and practice, we provide foundational understanding of scalable and reliable inference methods and practical algorithms of new inference methods, as well as extensive empirical evaluation on common machine learning and deep learning tasks. Classical inference algorithms, such as Markov chain Monte Carlo, have enabled probabilistic modeling to achieve gold standard results on many machine learning tasks. However, these algorithms are rarely used in modern machine learning due to the difficulty of scaling up to large datasets. Existing work suggests that there is an inherent trade-off between scalability and reliability, forcing practitioners to choose between expensive exact methods and biased scalable ones. To overcome the current trade-off, we introduce general and theoretically grounded frameworks to enable fast and asymptotically correct inference, with applications to Gibbs sampling, Metropolis-Hastings and Langevin dynamics. Deep neural networks (DNNs) have achieved impressive success on a variety of learning problems in recent years. However, DNNs have been criticized for being unable to estimate uncertainty accurately. Probabilistic modeling provides a principled alternative that can mitigate this issue; they are able to account for model uncertainty and achieve automatic complexity control. In this thesis, we analyze the key challenges of probabilistic inference in deep learning, and present novel approaches for fast posterior inference of neural network weights.
Probabilistic topic models have proven to be an extremely versatile class of mixed-membership models for discovering the thematic structure of text collections. There are many possible applications, covering a broad range of areas of study: technology, natural science, social science and the humanities. In this thesis, a new efficient parallel Markov Chain Monte Carlo inference algorithm is proposed for Bayesian inference in large topic models. The proposed methods scale well with the corpus size and can be used for other probabilistic topic models and other natural language processing applications. The proposed methods are fast, efficient, scalable, and will converge to the true posterior distribution. In addition, in this thesis a supervised topic model for high-dimensional text classification is also proposed, with emphasis on interpretable document prediction using the horseshoe shrinkage prior in supervised topic models. Finally, we develop a model and inference algorithm that can model agenda and framing of political speeches over time with a priori defined topics. We apply the approach to analyze the evolution of immigration discourse in the Swedish parliament by combining theory from political science and communication science with a probabilistic topic model. Probabilistiska ämnesmodeller (topic models) är en mångsidig klass av modeller för att estimera ämnessammansättningar i större corpusar. Applikationer finns i ett flertal vetenskapsområden som teknik, naturvetenskap, samhällsvetenskap och humaniora. I denna avhandling föreslås nya effektiva och parallella Markov Chain Monte Carlo algoritmer för Bayesianska ämnesmodeller. De föreslagna metoderna skalar väl med storleken på corpuset och kan användas för flera olika ämnesmodeller och liknande modeller inom språkteknologi. De föreslagna metoderna är snabba, effektiva, skalbara och konvergerar till den sanna posteriorfördelningen. Dessutom föreslås en ämnesmodell för högdimensionell textklassificering, med tonvikt på tolkningsbar dokumentklassificering genom att använda en kraftigt regulariserande priorifördelningar. Slutligen utvecklas en ämnesmodell för att analyzera "agenda" och "framing" för ett förutbestämt ämne. Med denna metod analyserar vi invandringsdiskursen i Sveriges Riksdag över tid, genom att kombinera teori från statsvetenskap, kommunikationsvetenskap och probabilistiska ämnesmodeller.
How can we automate and scale up the processes of learning accurate probabilistic models of complex data and obtaining principled solutions to probabilistic inference and analysis queries? This thesis presents efficient techniques for addressing these fundamental challenges grounded in probabilistic programming, that is, by representing probabilistic models as computer programs in specialized programming languages. First, I introduce scalable methods for real-time synthesis of probabilistic programs in domain-specific data modeling languages, by performing Bayesian structure learning over hierarchies of symbolic program representations. These methods let us automatically discover accurate and interpretable models in a variety of settings, including cross-sectional data, relational data, and univariate and multivariate time series data; as well as models whose structures are generated by probabilistic context-free grammars. Second, I describe SPPL, a probabilistic programming language that integrates knowledge compilation and symbolic analysis to compute sound exact answers to many Bayesian inference queries about both hand-written and machine-synthesized probabilistic programs. Third, I present fast algorithms for analyzing statistical properties of probabilistic programs in cases where exact inference is intractable. These algorithms operate entirely through black-box computational interfaces to probabilistic programs and solve challenging problems such as estimating bounds on the information flow between arbitrary sets of program variables and testing the convergence of sampling-based algorithms for approximate posterior inference. A large collection of empirical evaluations establish that, taken together, these techniques can outperform multiple state-of-the-art systems across diverse real-world data science problems, which include adapting to extreme novelty in streaming time series data; imputing and forecasting sparse multivariate flu rates; discovering commonsense clusters in relational and temporal macroeconomic data; generating synthetic satellite records with realistic orbital physics; finding information-theoretically optimal medical tests for liver disease and diabetes; and verifying the fairness of machine learning classifiers.
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. Explains the application of advanced probabilistic models encompassing multidisciplinary research Applies probabilistic modeling to emerging areas in engineering Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Identifies unifying principles, patterns, and intuitions for scaling Bayesian inference. Reviews existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, it characterizes the general principles that have proven successful for designing scalable inference procedures.
Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.
This book constitutes the refereed proceedings of the 7th International Conference on Scalable Uncertainty Management, SUM 2013, held in Washington, DC, USA, in September 2013. The 26 revised full papers and 3 revised short papers were carefully reviewed and selected from 57 submissions. The papers cover topics in all areas of managing and reasoning with substantial and complex kinds of uncertain, incomplete or inconsistent information including applications in decision support systems, machine learning, negotiation technologies, semantic web applications, search engines, ontology systems, information retrieval, natural language processing, information extraction, image recognition, vision systems, data and text mining, and the consideration of issues such as provenance, trust, heterogeneity, and complexity of data and knowledge.