Download Free Satellite Temperature Sounding Of The Atmosphere Book in PDF and EPUB Free Download. You can read online Satellite Temperature Sounding Of The Atmosphere and write the review.

An overall increase in global-mean atmospheric temperatures is predicted to occur in response to human-induced increases in atmospheric concentrations of heat-trapping "greenhouse gases." The most prominent of these gases, carbon dioxide, has increased in concentration by over 30% during the past 200 years, and is expected to continue to increase well into the future. Other changes in atmospheric composition complicate the picture. In particular, increases in the number of small particles (called aerosols) in the atmosphere regionally offset and mask the greenhouse effect, and stratospheric ozone depletion contributes to cooling of the upper troposphere and stratosphere. Many in the scientific community believe that a distinctive greenhouse-warming signature is evident in surface temperature data for the past few decades. Some, however, are puzzled by the fact that satellite temperature measurements indicate little, if any, warming of the lower to mid-troposphere (the layer extending from the surface up to about 8 km) since such satellite observations first became operational in 1979. The satellite measurements appear to be substantiated by independent trend estimates for this period based on radiosonde data. Some have interpreted this apparent discrepancy between surface and upper air observations as casting doubt on the overall reliability of the surface temperature record, whereas others have concluded that the satellite data (or the algorithms that are being used to convert them into temperatures) must be erroneous. It is also conceivable that temperatures at the earth's surface and aloft have not tracked each other perfectly because they have responded differently to natural and/or human-induced climate forcing during this particular 20-year period. Whether these differing temperature trends can be reconciled has implications for assessing: how much the earth has warmed during the past few decades, whether observed changes are in accord with the predicted response to the buildup of greenhouse gases in the atmosphere based on model simulations, and whether the existing atmospheric observing system is adequate for the purposes of monitoring global-mean temperature. This report reassesses the apparent differences between the temperature changes recorded by satellites and the surface thermometer network on the basis of the latest available information. It also offers an informed opinion as to how the different temperature records should be interpreted, and recommends actions designed to reduce the remaining uncertainties in these measurements.
An analysis was made of the Satellite Temperature Sounding Technique to determine the extent of temperature errors arising from possible atmospheric CO2 variations. These possible errors are compared to probable ozone-caused errors and to errors resulting from the radiometer uncertainties.
Atmospheric Satellite Observations: Variation Assimilation and Quality Assurance provides an invaluable reference for satellite data assimilation. Topics covered include linear algebra, frequently used statistical methods, the interpolation role of function fitting, filtering when dealing with real observations, minimization in data assimilation systems, 3D-Var and the inverse problem it solves, 4D-Var and adjoint techniques, and much more. The book concludes with satellite observation of hurricanes. - Contains mathematical concepts from several branches of study, including calculus, linear algebra, probability theory, functional analysis, and minimization - Illustrates quality assurance for satellite observations using real data examples - Includes a dedicated chapter on how different satellite instruments see hurricanes - Reviews theory, system development, and the numerical experiments of three- and four-dimensional variational data assimilation (3D-Var/4D-Var)
The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth’s interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).
This book describes how measurements can be made of the properties of the Earth and planets using this method. It includes descriptions of the scientific principles, technical implementation, mathematical methods for analysing the measurements, a history of measurements that have been made and discussions of the phenomena that have been discovered and studied using remote sounding.
A quantitative introduction to atmospheric science for students and professionals who want to understand and apply basic meteorological concepts but who are not ready for calculus.
This book is a collection of selected lectures presented at the ‘Intensive Course on Mesoscale Meteorology and Forecasting’ in Boulder, USA, in 1984. It includes mesoscale classifications, observing techniques and systems, internally generated circulations, mesoscale convective systems, externally forced circulations, modeling and short-range forecasting techniques. This is a highly illustrated book and comprehensive work, including extensive bibliographic references. It is aimed at graduates in meteorology and for professionals working in the field.
At last, a book that has what every atmospheric science and meteorology student should know about satellite meteorology: the orbits of satellites, the instruments they carry, the radiation they detect, and, most importantly, the fundamental atmospheric data that can be retrieved from their observations.Key Features* Of special interest are sections on:* Remote sensing of atmospheric temperature, trace gases, winds, cloud and aerosol data, precipitation, and radiation budget* Satellite image interpretation* Satellite orbits and navigation* Radiative transfer fundamentals