Download Free Sas And Open Source Model Management Book in PDF and EPUB Free Download. You can read online Sas And Open Source Model Management and write the review.

Turn analytical models into business value and smarter decisions with this special collection of papers about SAS Model Management. Without a structured and standardized process to integrate and coordinate all the different pieces of the model life cycle, a business can experience increased costs and missed opportunities. SAS Model Management solutions enable organizations to register, test, deploy, monitor, and retrain analytical models, leveraging any available technology - including open-source models in Python, R, and TensorFlow -into a competitive advantage.
Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance
This first book in the series covers how to access data files, libraries, and existing code in SAS Studio. You also learn about new procedures in SAS Viya, how to write new code, and how to use some of the pre-installed tasks that come with SAS Visual Data Mining and Machine Learning. In the last chapter, you learn how to use the features in SAS Data Preparation to perform data management tasks using SAS Data Explorer, SAS Data Studio, and SAS Lineage Viewer. Also available free as a PDF from sas.com/books.
SAS Visual Data Mining and Machine Learning, powered by SAS Viya, means that users of all skill levels can visually explore data on their own while drawing on powerful in-memory technologies for faster analytic computations and discoveries. You can manually program with custom code or use the features in SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling. These programs offer a flexible, easy-to-use, self-service environment that can scale on an enterprise-wide level. In this book, we will explore some of the many features of SAS Visual Data Mining and Machine Learning including: programming in the Python interface; new, advanced data mining and machine learning procedures; pipeline building in Model Studio, and model building and comparison in SAS Visual Analytics.
Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. In recent years, computer vision has begun to rival and even surpass human visual abilities in many areas. SAS offers many different solutions to train computers to "see" by identifying and classifying objects, and several groundbreaking papers have been written to demonstrate these techniques. The papers included in this special collection demonstrate how the latest computer vision tools and techniques can be used to solve a variety of business problems.
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Business users familiar with Base SAS programming can now learn Python by example. You will learn via examples that map SAS programming constructs and coding patterns into their Python equivalents. Your primary focus will be on pandas and data management issues related to analysis of data. It is estimated that there are three million or more SAS users worldwide today. As the data science landscape shifts from using SAS to open source software such as Python, many users will feel the need to update their skills. Most users are not formally trained in computer science and have likely acquired their skills programming SAS as part of their job. As a result, the current documentation and plethora of books and websites for learning Python are technical and not geared for most SAS users. Python for SAS Users provides the most comprehensive set of examples currently available. It contains over 200 Python scripts and approximately 75 SAS programs that are analogs to the Python scripts. The first chapters are more Python-centric, while the remaining chapters illustrate SAS and corresponding Python examples to solve common data analysis tasks such as reading multiple input sources, missing value detection, imputation, merging/combining data, and producing output. This book is an indispensable guide for integrating SAS and Python workflows. What You’ll Learn Quickly master Python for data analysis without using a trial-and-error approach Understand the similarities and differences between Base SAS and Python Better determine which language to use, depending on your needs Obtain quick results Who This Book Is For SAS users, SAS programmers, data scientists, data scientist leaders, and Python users who need to work with SAS
The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. SAS For Dummies, 2nd Edition gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide. SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and more Places special emphasis on Enterprise Guide and other analytical tools, covering all commonly used features Covers all commonly used features and shows you the practical applications you can put to work in your business Explores how to get various types of data into the software and how to work with databases Covers producing reports and Web reporting tools, analytics, macros, and working with your data In the easy-to-follow, no-nonsense For Dummies format, SAS For Dummies gives you the knowledge and the confidence to get SAS working for your organization. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Learn SAS® administration from the ground up! Those who are new to SAS platform administration may find themselves full of questions. SAS® Administration from the Ground Up: Running the SAS®9 Platform in a Metadata Server Environment will save you time, money and frustration. This book walks the reader through setting up and maintaining a SAS platform from scratch. The author includes tips on best practices and troubleshooting to show you simple ways to streamline your SAS environment and make your work more manageable. Written for both new administrators and seasoned professionals, this book covers: SAS® 9.4 architecture SAS administration tools such as SAS® Management Console, SAS® Environment Manager and SAS® Deployment Manager Users, groups, and roles Metadata library administration Security Also included is a master administration checklist, with helpful resources provided for each task.
R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.