Download Free Sandbows And Black Lights Book in PDF and EPUB Free Download. You can read online Sandbows And Black Lights and write the review.

Why are candle flames yellow? Why does ultraviolet light supposedly kill vampires? What about the monocle? Why was the monocle--a corrective lens that only corrects vision in a single eye--so popular among businessmen and politicians for so many years? Stephen R. Wilk answers all this and so much more in Sandbows and Black Lights. This book is a collection of original essays on weird and unusual topics surrounding optics. Wilk uses the BBC's formula of "Education by Stealth" to explain unusual facets of science and technology through the matrix of interesting and cultural paths, all the while weaving in math equations in an accessible way. The first part of the book focuses on the history, the second moves to odd scientific approaches to visual phenomena, and the third part explains the unique use of optics in fiction, movies, and comic books over time. Chapters cover everything from endless corridors to the beam of light over treasure chests in movies. Whether he is explaining a rare discovery or answering a seemingly unapproachable question, Wilk is able to lure readers in on every page. He has a unique ability to turn complex science into an engaging story, and this book is full of narratives on esoteric topics anyone will find intriguing. Sandbows and Black Lights provides an enticing and entertaining look at physical illusions in a whole new way.
"In the almost twenty years since I began writing my essays on strange and quirky optics I have been through several employers, but in all that time I have stayed a contributing editor for the Optical Society of America. No matter where I was during the day, I always worked on producing these nuggets of infotainment with some regularity. I have always had a backlog of tentative pieces to write, but new topics arose just as rapidly, so I have never been at a loss with a new piece. The newsletter of MIT's Spectroscopy Lab has, in that time, disappeared, so the essays in this volume are either ones that originally appeared in Optics and Photonics News, or else have not previously been published in any magazine. As I stated in the introduction to How the Ray Gun Got Its Zap!, my goal was to produce quirky, interesting, and somewhat humorous essays that had a slyly pedagogical edge. "Education by stealth," as the BBC said. In reality, I often start off writing one of these to satisfy myself about some minor mystery of optical science or engineering"--
A collection of engaging essays that discusses odd and unusual topics in optics
Introduces readers to the basic properties of light -reflection and refraction, polarization, and interference- before moving on to how light is generated, its role in relativity, and quantum effects it exhibits.
The book provides an overview of the fascinating spectrum of semiconductor physics, devices and applications, presented from a historical perspective. It covers the development of the subject from its inception in the early nineteenth century to the recent millennium. Written in a lively, informal style, it emphasizes the interaction between pure scientific push and commercial pull, on the one hand, and between basic physics, materials, and devices, on the other. It also sets the various device developments in the context of systems requirements and explains how such developments met wide ranging consumer demands. It is written so as to appeal to students at all levels in physics, electrical engineering, and materials science, to teachers, lecturers, and professionals working in the field, as well as to a non-specialist scientific readership.
This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrödinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations. The structure of the book is designed around five principal chapters, but many of the chapters have extensive "complements" that either treat important digressions from the main body or penetrate deeper into some fundamental issue. Furthermore, at the end of the book are several appendices to provide readers with a convenient reference for frequently-occurring special functions and explanations of the analytical tools, such as vector calculus and phasors, needed to express important results in electromagnetics and waveguide theory.
The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.
Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. This book summarizes the results presented at the 17th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
This book provides the first comprehensive, up-to-date and self-contained introduction to the emergent field of Programmable Integrated Photonics (PIP). It covers both theoretical and practical aspects, ranging from basic technologies and the building of photonic component blocks, to designalternatives and principles of complex programmable photonic circuits, their limiting factors, techniques for characterization and performance monitoring/control, and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focusesmainly on the distinctive features of programmable photonics, as compared to more traditional ASPIC approaches.After some years during which the Application Specific Photonic Integrated Circuit (ASPIC) paradigm completely dominated the field of integrated optics, there has been an increasing interest in PIP. The rising interest in PIP is justified by the surge in a number of emerging applications that callfor true flexibility and reconfigurability, as well as low-cost, compact, and low-power consuming devices.Programmable Integrated Photonics is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming, can implement a variety of functionalities. These in turn can be exploited as basic operations in many application fields. Programmabilityenables, by means of external control signals, both chip reconfiguration for multifunction operation, as well as chip stabilization against non-ideal operations due to fluctuations in environmental conditions and fabrication errors. Programming also allows for the activation of parts of the chip,which are not essential for the implementation of a given functionality, but can be of help in reducing noise levels through the diversion of undesired reflections.