Download Free Sand Production Management For Unconsolidated Sandstone Reservoirs Book in PDF and EPUB Free Download. You can read online Sand Production Management For Unconsolidated Sandstone Reservoirs and write the review.

This book investigates sand production problems in the development of unconsolidated sand reservoirs and suggests novel technical solutions and improvements to sand management issues. This book is divided into six chapters: (1) geologic characteristics of unconsolidated sand heavy oil reservoirs and concept of sand management technology; (2) sand production mechanisms and its effect on reservoir petrophysical quality; (3) sand production quantity prediction and well productivity evaluation methods, especially for fluid-solid coupling prediction model; (4) completion technology for sand management; (5) sand flow in well bore and surface processing; (6) the application of sand management technology in China’s Bohai heavy oil field. Readership: Petroleum reservoir engineers and production managers worldwide.
Produced sand causes a lot of problems. From that reasons sand production must be monitored and kept within acceptable limits. Sand control problems in wells result from improper completion techniques or changes in reservoir properties. The idea is to provide support to the formation to prevent movement under stresses resulting from fluid flow from reservoir to well bore. That means that sand control often result with reduced well production. Control of sand production is achieved by: reducing drag forces (the cheapest and most effective method), mechanical sand bridging (screens, gravel packs) and increasing of formation strength (chemical consolidation). For open hole completions or with un-cemented slotted liners/screens sand failure will occur and must be predicted. Main problem is plugging. To combat well failures due to plugging and sand breakthrough Water-Packing or Shunt-Packing are used.
This practical guide details a variety of production and completion techniques for controlling sand that are as useful today as when this volume was first published.
Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts
Completions are the conduit between hydrocarbon reservoirs and surface facilities. They are a fundamental part of any hydrocarbon field development project. The have to be designed for safely maximising the hydrocarbon recovery from the well and may have to last for many years under ever changing conditions. Issues include: connection with the reservoir rock, avoiding sand production, selecting the correct interval, pumps and other forms of artificial lift, safety and integrity, equipment selection and installation and future well interventions. - Course book based on course well completion design by TRACS International - Unique in its field: Coverage of offshore, subsea, and landbased completions in all of the major hydrocarbon basins of the world - Full colour
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today's more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors' own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. - Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates - Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations - Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI
This book presents detailed explanations of how to formulate field development plans for oil and gas discovery. The data and case studies provided here, obtained from the authors’ field experience in the oil and gas industry around the globe, offer a real-world context for the theories and procedures discussed. The book covers all aspects of field development plan processes, from reserve estimations to economic analyses. It shows readers in both the oil and gas industry and in academia how to prepare field development plans in a straightforward way, and with substantially less uncertainty.
Applied Petroleum Geomechanics provides a bridge between theory and practice as a daily use reference that contains direct industry applications. Going beyond the basic fundamentals of rock properties, this guide covers critical field and lab tests, along with interpretations from actual drilling operations and worldwide case studies, including abnormal formation pressures from many major petroleum basins. Rounding out with borehole stability solutions and the geomechanics surrounding hydraulic fracturing and unconventional reservoirs, this comprehensive resource gives petroleum engineers a much-needed guide on how to tackle today's advanced oil and gas operations. - Presents methods in formation evaluation and the most recent advancements in the area, including tools, techniques and success stories - Bridges the gap between theory of rock mechanics and practical oil and gas applications - Helps readers understand pore pressure calculations and predictions that are critical to shale and hydraulic activity
Subsidence of geologic surface structures due to withdrawal of fluids from aquifers and petroleum reservoirs is a phenomenon experienced throughout the world as the demand for water and hydrocarbons increases with increasing population growth. This book addresses the definition and theories of subsidence, and the influences of unique conditions on subsidence; it includes discussions of specific field cases and a basic mathematical model of reservoir compaction and accompanying loss of porosity and permeability. The book is designed as a reference for readers giving immediate access to the geological events that establish conditions for compaction, the mathematical theories of compaction and subsidence, and practical considerations of field case histories in various regions of the world.
This Handbook provides solutions to the fundamental issues associated with wells and reservoirs experiencing sanding problems, especially in deepwater environments. Sand Management is a massive challenge for the petroleum industry as it extends its exploration activities to new frontiers. Challenging ultra deepwater, High Pressure-High Temperature (HP-HT) and Arctic environments require engineers to drill more complex wells and manage more complex reservoirs, the majority of which are prone to massive sand production. Covering such fundamentals as how to maximize individual wells and field development performance, as well as how to minimize operational cost, non-productive time and guarantee flow assurance across the entire composite production system from reservoirs through the wellbore to the topside and flow lines, this handbook explains that the biggest challenge facing operators is the shortage of sand management personnel and helps companies realize the value of their assets. - Reference for knowledge transfer and skills development in sand management for effective flow assurance - Emphasis on HP-HT and deepwater environments - Meets the needs of new and practising engineers alike as well as non-technical personnel supporting the offshore industry