Download Free Salt Stress Microbes And Plant Interactions Causes And Solution Book in PDF and EPUB Free Download. You can read online Salt Stress Microbes And Plant Interactions Causes And Solution and write the review.

This book offers an overview of salt stress, which has a devastating effect on the yields of various agricultural crops around the globe. Excessive salts in soil reduce the availability of water, inhibit metabolic processes, and affect nutrient composition, osmotic balance, and hydraulic conductivity. Plants have developed a number of tolerance mechanisms, such as various compatible solutes, polyamines, reactive oxygen species and antioxidant defense mechanisms, ion transport and compartmentalization of injurious ions. The exploitation of genetic variation, use of plant hormones, mineral nutrients, soil microbe interactions, and other mechanical practices are of prime importance in agriculture, and as such have been the subject of multidisciplinary research. Covering both theoretical and practical aspects, the book provides essential physiological, ecological, biochemical, environmental and molecular information as well as perspectives for future research. It is a valuable resource for students, teachers and researchers and anyone interested in agronomy, ecology, stress physiology, environmental science, crop science and molecular biology.
This book offers an overview of salt stress, which has a devastating effect on the yields of various agricultural crops around the globe. Excessive salts in soil reduce the availability of water, inhibit metabolic processes, and affect nutrient composition, osmotic balance, and hydraulic conductivity. Plants have developed a number of tolerance mechanisms, such as various compatible solutes, polyamines, reactive oxygen species and antioxidant defense mechanisms, ion transport and compartmentalization of injurious ions. The exploitation of genetic variation, use of plant hormones, mineral nutrients, soil microbe interactions, and other mechanical practices are of prime importance in agriculture, and as such have been the subject of multidisciplinary research. Covering both theoretical and practical aspects, the book provides essential physiological, ecological, biochemical, environmental and molecular information as well as perspectives for future research. It is a valuable resource for students, teachers and researchers and anyone interested in agronomy, ecology, stress physiology, environmental science, crop science and molecular biology.
This book gathers the latest findings on the microbial ecology of saline habitats, plant-microbe interactions under saline conditions, and saline soil reclamation for agricultural use. The content is divided into four main parts: Part I outlines the definition of salinity, its genesis and impacts, and microbial diversity in saline habitats. Part II deals with impact of salinity on microbial and plant life/health. Part III highlights plant – microbe interactions in saline environments, and Part IV describes strategies for mitigation and reclamation of saline soils. The salinization of arable land is steadily increasing in many parts of the world. An excessive concentration of soluble salts (salinity) in soils or irrigation water adversely affects plant growth and survival. This problem is exacerbated in arid and semiarid areas due to their low precipitation and high evaporation rates. In turn, poor management practices and policies for using river water for the irrigation of agriculture crops often lead to the secondary salinization of soils. Considering the growing demands of a constantly expanding population, understanding the microbial ecology and interactions under saline conditions and their implications for sustainable agriculture is of utmost importance. Providing both an essential review of the status quo and a future outlook, this book represents a valuable asset for researchers, environmentalists and students working in microbiology and agriculture. .
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production. - Explores the potential benefits of optimized rhizosphere - Includes metagenomics and their emerging importance - Presents insights into the use of biosurfactants
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.
The continual change in climatic conditions induces a series of adaptations in plants to suit the unfavorable conditions for sustainable agriculture. For sustainable agriculture, it is important to unravel the precise mechanism(s) that disturb the homeostatic equilibrium at cellular and molecular level and also to enhance understanding to build strategies for the tolerance of plants. Osmolytes have long been identified as pivotal abiotic stress busters because of their role in plants in overcoming extremely harsh environmental conditions. This edited compilation attempts to put forth the scattered knowledge on osmolytes and their role in abiotic stress tolerance together and disseminate as a package to deal with the problems of lower productivity under stressful environment. It will enhance the understanding on osmolytes function and bioengineering of plants for abiotic stress tolerance. The book covers very interesting topics dealing with various osmolytes and the mechanistic approach for abiotic stress tolerance to pave the path of agricultural scientists, breeders for developing high yielding sustainable transgenic crops.
This edited volume focuses on the characterization, reclamation, bioremediation, and phytoremediation of salt affected soils and waterlogged sodic soils. Innovative technologies in managing marginal salt affected lands merit immediate attention in the light of climate change and its impact on crop productivity and environment. The decision-making process related to reclamation and management of vast areas of salt affected soils encompasses consideration of economic viability, environmental sustainability, and social acceptability of different approaches. The chapters in this book highlight the significant environmental and social impacts of different ameliorative techniques used to manage salt affected soils. Readers will discover new knowledge on the distribution, reactions, changes in bio-chemical properties and microbial ecology of salt affected soils through case studies exploring Indian soils. The contributions presented by experts shed new light on techniques such as the restoration of degraded lands by growing halophyte plant species, diversification of crops and introduction of microbes for remediation of salt infested soils, and the use of fluorescent pseudomonads for enhancing crop yields.
World population is growing at an alarming rate and is anticipated to reach about six billion by the end of year 2050. On the other hand, agricultural productivity is not increasing at a required rate to keep up with the food demand. The reasons for this are water shortages, depleting soil fertility and mainly various abiotic stresses. The fast pace at which developments and novel findings that are recently taking place in the cutting edge areas of molecular biology and basic genetics, have reinforced and augmented the efficiency of science outputs in dealing with plant abiotic stresses. In depth understanding of the stresses and their effects on plants is of paramount importance to evolve effective strategies to counter them. This book is broadly dived into sections on the stresses, their mechanisms and tolerance, genetics and adaptation, and focuses on the mechanic aspects in addition to touching some adaptation features. The chief objective of the book hence is to deliver state of the art information for comprehending the nature of abiotic stress in plants. We attempted here to present a judicious mixture of outlooks in order to interest workers in all areas of plant sciences.