Download Free Safety Risk Management For Medical Devices Book in PDF and EPUB Free Download. You can read online Safety Risk Management For Medical Devices and write the review.

Safety Risk Management for Medical Devices, Second Edition teaches the essential safety risk management methodologies for medical devices compliant with the requirements of ISO 14971:2019. Focusing exclusively on safety risk assessment practices required in the MedTech sector, the book outlines sensible, easily comprehensible, state-of the-art methodologies that are rooted in current industry best practices, addressing safety risk management of medical devices, thus making it useful for those in the MedTech sector who are responsible for safety risk management or need to understand risk management, including design engineers, product engineers, development engineers, software engineers, Quality assurance and regulatory affairs. Graduate-level engineering students with an interest in medical devices will also benefit from this book. The new edition has been fully updated to reflect the state-of-the-art in this fast changing field. It offers guidance on developing and commercializing medical devices in line with the most current international standards and regulations. - Includes new coverage of ISO 14971:2019, ISO/TR 24971 - Presents the latest information on the history of risk management, lifetime of a medical device, risk management review, production and post production activities, post market risk management - Provides practical, easy-to-understand and state-of the-art methodologies that meet the requirements of international regulation
When it comes to medical and in vitro devices, risk management starts with a design assurance process that helps practitioners identify, understand, analyze, and mitigate the risks of the healthcare product design for favorable benefit-risk assessment. Risk management actively follows the product’s life cycle into production and post-market phases. This book offers a blueprint for implementing an effective risk management system. It provides risk management tools and a compliance framework for methods in conformance to ISO 13485:2016, ISO 14971:2019, European Union MDR, IVDR, and US FDA regulations (including the new FDA QMSR).
Medical equipment, Medical instruments, Risk assessment, Risk analysis, Management, Hazards, Clinical investigation instruments, Safety measures
Preface Development in the feld of medical technology has resulted in a manifold of medical devices enabling us to diagnose illnesses more reliably, treat them more effciently and compensate for handicaps more effectively. However, these improvements are also - sociated with safety risks. Today, patients are in contact with an increasing number of medical devices longer and more intensively then before. Applied parts are put into contact with the body, probes may be introduced into the body via natural or surgical orifces, and even whole devices may be implanted for many years. The application of devices is no longer restricted to medical locations only. Home use by lay people is increasing and involves even critical devices such as for dialysis, nerve and muscle stimulation and ventilation. In contrast to users’ patients are in a special situation. Their life could depend on the performance of a device, they might be unconscious, may have impaired reactions, or have been made insensitive to pain by medication, and hence they may be exposed to hazards without their awareness and protection by their own reaction. Therefore, medical devices must meet particularly stringent safety requirements. However, the question arises how safe is safe enough? The readiness to accept risks depends on a variety of accompanying circumstances. In fact, subjective risk p- ception varies among individuals and differs from country to country, and frequently only in rare cases it is in agreement with assessments of objective scientifc ana- ses.
Principles of Risk Management and Patient Safety identifies changes in the industry and describes how these changes have influenced the functions of risk management in all aspects of healthcare. The book is divided into four sections. The first section describes the current state of the healthcare industry and looks at the importance of risk management and the emergence of patient safety. It also explores the importance of working with other sectors of the health care industry such as the pharmaceutical and device manufacturers. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition.
The term 'medical devices' covers a wide range of equipment essential for patient care at every level of the health service, whether at the bedside, at a health clinic or in a large specialised hospital. Yet many countries lack access to high-quality devices, particularly in developing countries where health technology assessments are rare and there is a lack of regulatory controls to prevent the use of substandard devices. This publication provides a guidance framework for countries wishing to create or modify their own regulatory systems for medical devices, based on best practice experience in other countries. Issues highlighted include: the need for harmonised regulations; and the adoption, where appropriate, of device approvals of advanced regulatory systems to avoid an unnecessary drain on scarce resources. These approaches allow emphasis to be placed on locally-assessed needs, including vendor and device registration, training and surveillance and information exchange systems.
This handbook provides the most up to date resource currently available for interpreting and understanding design controls. This handbook is the most exhaustive resource ever written about FDA & ISO 13485 design controls for medical devices with a collection of all applicable regulations and real-world examples. Four-hundred & forty, 8.5" X 11" pages provides an extensive evaluation of FDA 21 CFR 820 and is cross-referenced with ISO 13485 to provide readers with a broad and in-depth review of practical design control implementation techniques. This handbook also covers basic, intermediate and advanced design control topics and is an ideal resource for implementing new design control processes or upgrading an existing process into medical device quality systems. This critical resource also specifically outlines key topics which will allow quality managers and medical device developers to improve compliance quickly to pass internal and external audits and FDA inspections. The author breaks down the regulation line by line and provides a detailed interpretation by using supportive evidence from the FDA design control guidance and the quality systems preamble. Numerous examples, case studies, best practices, 70+ figures and 45+ tables provide practical implementation techniques which are based on the author's extensive experience launching numerous medical device products and by integrating industry consultant expertise. In addition, bonus chapters include: explanation of medical device classification, compliance to design controls, risk management, and the design control quality system preamble. 20-40 pages are dedicated to each of the major design control topics: Design and Development Planning, Design Input, Design Output, Design Transfer, Design Verification, Design Validation, Design Change and Design History File.
This book is a practical guide for individuals responsible for creating products that are safe, effective, usable, and satisfying in the hands of the intended users. The contents are intended to reduce the number of use errors involving medical devices that have led to injuries and deaths. The book presents the strong connection between user interface requirements and risk management for medical devices and instructs readers how to develop specific requirements that are sufficiently comprehensive and detailed to produce good results – a user-friendly product that is likely to be used correctly. The book’s tutorial content is complemented by many real-world examples of user interface requirements, including ones pertaining to an inhaler, automated external defibrillator, medical robot, and mobile app that a patient might use to manage her diabetes. The book is intended for people representing a variety of product development disciplines who have responsibility for producing safe, effective, usable, and satisfying medical devices, including those who are studying or working in human factors engineering, psychology, mechanical engineering, biomedical engineering, systems engineering, software programming, technical writing, industrial design, graphic design, and regulatory affairs.
While the safety assessment (“biocompatibility”) of medical devices has been focused on issues of local tissue tolerance (irritation, sensitization, cytotoxicity) and selected quantal effects (genotoxicity and acute lethality) since first being regulated in the late 1950s, this has changed as devices assumed a much more important role in healthcare and became more complex in both composition and in their design and operation. Add to this that devices now frequently serve as delivery systems for drugs, and that drugs may be combined with devices to improve device performance, and the problems of ensuring patient safety with devices has become significantly more complex. A part of this, requirements for ensuring safety (once based on use of previously acceptable materials – largely polymers and metals) have come to requiring determining which chemical entities are potentially released from a device into patients (and how much is released). Then an appropriate and relevant (yet also conservative) risk assessment must be performed for each identified chemical structure. The challenges inherent in meeting the current requirements are multifold, and this text seeks to identify, understand, and solve all of them. • Identify and verify the most appropriate available data. • As in most cases such data is for a different route of exposure, transform it for use in assessing exposure by the route of interest. • As the duration (and rate) of exposure to moieties released from a device are most frequently different (longer) than what available data speaks to, transformation across tissue is required. • As innate and adaptive immune responses are a central part of device/patient interaction, assessing potential risks on this basis are required. • Incorporating assessments for special populations such as neonates. • Use of (Q)SAR (Quantitative Structure Activity Relationships) modeling in assessments. • Performance and presentation of integrative assessments covering all potential biologic risks. Appendices will contain summarized available biocompatibility data for commonly used device materials (polymers and metals) and safety assessments on the frequently seen moieties in extractions from devices.