Download Free Safety Reliability And Human Factors In Robotic Systems Book in PDF and EPUB Free Download. You can read online Safety Reliability And Human Factors In Robotic Systems and write the review.

Now that workers in industry are likely to run into robots most anywhere, guidelines to dealing with them are necessary. Safety, systems, and robotic engineers explain to other engineers the concerns in various industries, and the multidisciplinary research and development to ensure the safety of robot technology. Annotation copyrighted by Book News, Inc., Portland, OR
As robots are used more and more to perform a variety of tasks in a range of fields, it is imperative to make the robots as reliable and safe as possible. Yet no book currently covers robot reliability and safety within one framework. Robot System Reliability and Safety: A Modern Approach presents up-to-date information on robot reliability, safety
Robots are increasingly being used in industry to perform various types of tasks. Some of the tasks performed by robots in industry are spot welding, materials handling, arc welding, and routing. The population of robots is growing at a significant rate in various parts of the world; for example, in 1984, a report published by the British Robot Association indicated a robot popula tion distribution between Japan (64,600), Western Europe (20,500), and the United States (13,000). This shows a significant number of robots in use. Data available for West Germany and the United Kingdom indicate that in 1977 there were 541 and 80 robots in use, respectively, and in 1984 these numbers went up to 6600 and 2623, respectively. Just as for other engineering products, the reliability and safety of robots are important. A robot has to be safe and reliable. An unreliable robot may become the cause of unsafe conditions, high maintenance costs, inconvenience, etc. Robots make use of electrical, mechanical, pneumatic, electronic, and hydraulic parts. This makes their reliability problem a challenging task because of the many different sources of failures. According to some published literature, the best mean time between failures (MTBF) achieved by robots is only 2500 hours. This means there is definite room for further improvement in robot reliability. With respect to safety, there have been five fatal accidents involving robots since 1978.
This book is a collection of some of the papers that were presented during a NATO Advanced Research Workshop (ARW) on "Intelligent Systems: Safety, Reliability and Maintainability Issues" that was held in Kusadasi, Turkey during August 24- 28, 1992. Attendance at this workshop was mainly by invitation only, drawing people internationally representing industry, government and the academic community. Many of the participants were internationally recognized leaders in the topic of the workshop. The purpose of the ARW was to bring together a highly distinguished group of people with the express purpose of debating where the issues of safety, reliability and maintainability place direct and tangible constraints on the development of intelligent systems. As a consequence, one of the major debating points in the ARW was the definition of intelligence, intelligent behaviour and their relation to complex dynamic systems. Two major conclusions evolved from the ARW are: 1. A continued need exists to develop formal, theoretical frameworks for the architecture of such systems, together with a reflection on the concept of intelligence. 2. There is a need to focus greater attention to the role that the human play in controlling intelligent systems. The workshop began by considering the typical features of an intelligent system. The complexity associated with multi-resolutional architectures was then discussed, leading to the identification of a necessity for the use of a combinatorial synthesis/approach. This was followed by a session on human interface issues.
The book discusses human factors integration methodolgy and reviews the issues that underpin consideration of key topics such as human error, automation and human reliability assesment.
With the increasing demand of robots for industrial and domestic use, it becomes indispensable to ensure their safety, security, and reliability. Safety, Security and Reliability of Robotic Systems: Algorithms, Applications, and Technologies provides a broad and comprehensive coverage of the evolution of robotic systems, as well as industrial statistics and future forecasts. First, it analyzes the safety-related parameters of these systems. Then, it covers security attacks and related countermeasures, and how to establish reliability in these systems. The later sections of the book then discuss various applications of these systems in modern industrial and domestic settings. By the end of this book, you will be familiarized with the theoretical frameworks, algorithms, applications, technologies, and empirical research findings on the safety, security, and reliability of robotic systems, while the book’s modular structure and comprehensive material will keep you interested and involved throughout. This book is an essential resource for students, professionals, and entrepreneurs who wish to understand the safe, secure, and reliable use of robotics in real-world applications. It is edited by two specialists in the field, with chapter contributions from an array of experts on robotics systems and applications.
Trust in Human-Robot Interaction addresses the gamut of factors that influence trust of robotic systems. The book presents the theory, fundamentals, techniques and diverse applications of the behavioral, cognitive and neural mechanisms of trust in human-robot interaction, covering topics like individual differences, transparency, communication, physical design, privacy and ethics. - Presents a repository of the open questions and challenges in trust in HRI - Includes contributions from many disciplines participating in HRI research, including psychology, neuroscience, sociology, engineering and computer science - Examines human information processing as a foundation for understanding HRI - Details the methods and techniques used to test and quantify trust in HRI
Each year billions of dollars are being spent in the area of nuclear power generation to design, construct, manufacture, operate, and maintain various types of systems around the globe. Many times these systems fail due to safety, reliability, human factors, and human error related problems. The main objective of this book is to combine nuclear power plant safety, reliability, human factors, and human error into a single volume for those individuals that work closely during the nuclear power plant design phase, as well as other phases, thus eliminating the need to consult many different and diverse sources in obtaining the desired information.
Industrieroboter gehoren heute zum Alltag. In den letzten zehn Jahren verlagerte sich der Schwerpunkt der Neuentwicklungen weg von den Robotern selbst, hin zu alternativen Formen der kunstlichen Intelligenz, mit denen die Gerate ausgestattet werden. Dem Rechnung tragend, beschaftigt sich die zweite Auflage dieses Handbuchs vor allem mit Anwendungen und Strategien zur Problemlosung in der Industrie. Angesprochen werden Themen wie Graphiksimulatoren, objektorientierte Software, Kommunikationssysteme und Mikro- und Nanoroboter. (04/99)
This book focuses on the importance of human factors in the development of safe and reliable robotic and unmanned systems. It discusses current challenges, such as how to improve the perceptual and cognitive abilities of robots, develop suitable synthetic vision systems, cope with degraded reliability in unmanned systems, and predict robotic behavior in relation to human activities. Further, it highlights potential future human-robot and human-agent collaboration, suggesting real-world implications of and approaches for improving human-machine interaction across unmanned systems. Based on the AHFE 2020 Virtual Conference on Human Factors in Robots, Drones and Unmanned Systems, held on July 16-20, 2020, this book is intended to foster discussion and collaborations among researchers and practitioners, thus stimulating new solutions for the development of reliable and safe, human-centered, highly functional devices to perform automated and concurrent tasks.