Download Free Safety Problems Of Liquid Metal Cooled Fast Breeder Reactors Book in PDF and EPUB Free Download. You can read online Safety Problems Of Liquid Metal Cooled Fast Breeder Reactors and write the review.

Fast Reactor Safety deals with safety design criteria and methodology for fast reactors. Topics covered include safety evaluation methods, system disturbances, containment, and licensing. The characteristics of fast reactors, including heat ratings and coolants, are also discussed. Comprised of six chapters, this book opens with an overview of methods used to evaluate nuclear safety, along with neutron kinetics, thermal and feedback effects, and fault tree analysis. The reader is then introduced to possible system disturbances in relation to three distinct fast reactor systems: liquid-metal-cooled fast breeder reactors, gas-cooled fast breeder reactors, and steam-cooled fast breeder reactors. The next chapter looks at safety criteria that are set to define the design of a safe plant, together with the safety features that might be included. The remaining chapters focus on the particular problems of a sodium-cooled design; containment building and primary circuit and vessel containment; and licensing of the plant. This monograph is intended for graduates and undergraduates in nuclear engineering who are attending courses in reactor safety.
In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B & B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B & B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B & B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.
Presents a survey of worldwide experience gained with fast breeder reactor design, development and operation. Coverage includes state of the art of liquid metal fast reactor development; lead-bismuth cooled (LBC) ship reactor operation experience and LBC fast power reactor development; and treatment and disposal of spent sodium.