Download Free Safety In The Use Of Industrial Robots Book in PDF and EPUB Free Download. You can read online Safety In The Use Of Industrial Robots and write the review.

Human-Robot Interaction: Safety, Standardization, and Benchmarking provides a comprehensive introduction to the new scenarios emerging where humans and robots interact in various environments and applications on a daily basis. The focus is on the current status and foreseeable implications of robot safety, approaching these issues from the standardization and benchmarking perspectives. Featuring contributions from leading experts, the book presents state-of-the-art research, and includes real-world applications and use cases. It explores the key leading sectors--robotics, service robotics, and medical robotics--and elaborates on the safety approaches that are being developed for effective human-robot interaction, including physical robot-human contacts, collaboration in task execution, workspace sharing, human-aware motion planning, and exploring the landscape of relevant standards and guidelines. Features Presenting a comprehensive introduction to human-robot interaction in a number of domains, including industrial robotics, medical robotics, and service robotics Focusing on robot safety standards and benchmarking Providing insight into current developments in international standards Featuring contributions from leading experts, actively pursuing new robot development
Contains guidelines for preventing injury due to unexpected or unintended robot motion to personnel whose job is to correct problems with the normal operation of robotized industrial systems. Covers: hazards and hazardous locations, protective devices and procedures, systematic methods for injury prevention analysis, and maintenance management. Charts, tables and drawings.
The vision of seamless human-robot interaction in our everyday life that allows for tight cooperation between human and robot has not become reality yet. However, the recent increase in technology maturity finally made it possible to realize systems of high integration, advanced sensorial capabilities and enhanced power to cross this barrier and merge living spaces of humans and robot workspaces to at least a certain extent. Together with the increasing industrial effort to realize first commercial service robotics products this makes it necessary to properly address one of the most fundamental questions of Human-Robot Interaction: How to ensure safety in human-robot coexistence? In this authoritative monograph, the essential question about the necessary requirements for a safe robot is addressed in depth and from various perspectives. The approach taken in this book focuses on the biomechanical level of injury assessment, addresses the physical evaluation of robot-human impacts, and isolates the major factors that cause human injuries. This assessment is the basis for the design and exploration of various measures to improve safety in human-robot interaction. They range from control schemes for collision detection, reflex reaction, and avoidance to the investigation of novel joint designs that equip robots with fundamentally new capabilities. By the depth of its analysis and exceptionally salient experimental work, this monograph offers one of the most comprehensive treatments of the safety challenge in the field.
Robots are increasingly being used in industry to perform various types of tasks. Some of the tasks performed by robots in industry are spot welding, materials handling, arc welding, and routing. The population of robots is growing at a significant rate in various parts of the world; for example, in 1984, a report published by the British Robot Association indicated a robot popula tion distribution between Japan (64,600), Western Europe (20,500), and the United States (13,000). This shows a significant number of robots in use. Data available for West Germany and the United Kingdom indicate that in 1977 there were 541 and 80 robots in use, respectively, and in 1984 these numbers went up to 6600 and 2623, respectively. Just as for other engineering products, the reliability and safety of robots are important. A robot has to be safe and reliable. An unreliable robot may become the cause of unsafe conditions, high maintenance costs, inconvenience, etc. Robots make use of electrical, mechanical, pneumatic, electronic, and hydraulic parts. This makes their reliability problem a challenging task because of the many different sources of failures. According to some published literature, the best mean time between failures (MTBF) achieved by robots is only 2500 hours. This means there is definite room for further improvement in robot reliability. With respect to safety, there have been five fatal accidents involving robots since 1978.
Robots are used in industry, rescue missions, military operations, and subwater missions. Their use in hazardous environments is crucial in terms of occupational safety of workers and the health of rescue and military operations. This book presents several hazardous environment operations and safe operations of robots interacting with people in the context of occupational health and safety.
The hardest data for managers and engineers in charge of the design and implementation of robot systems to acquire is also the most valuable: case studies detailing best current practice and the return on investment actually achieved. It has been a major goal of the British Robot Association, among other professional groups, to organise meetings where such case studies are presented and discussed between members; but the obvious restrictions of commercial confidentiality lead to considerable difficulty, especially in relation to the best recent installations. The authors of this book have been in the uniquely privileged position of lecturing in the Cambridge University Production Engineering Tripos, a course specially organised in conjunction with a number of leading companies applying robots and automation. Actual case studies from these companies form an important part of the course, making this book that has emerged from it a uniquely important addition to our Open University Press series.