Download Free Safety In The Elementary Science Classroom Book in PDF and EPUB Free Download. You can read online Safety In The Elementary Science Classroom and write the review.

ItOCOs a safety resource your classroom should not be without! As attractive as a poster and as convenient to use as a calendar, the completely updated Safety in the Elementary Classroom flipchart is a quick-read resource on how to prevent or solve safety problems as they arise. It offers step-by-step instructions on such essential topics as: .: .; In case of accident.; Fire protection.; Plants in the classroom.; First aid.; Animals in the classroom.; Field trips.; Fire prevention and control.; Storage and labeling.; Safe use of equipment and materials."
Your Science Classroom: Becoming an Elementary / Middle School Science Teacher, by authors M. Jenice "Dee" Goldston and Laura Downey, is a core teaching methods textbook for use in elementary and middle school science methods courses. Designed around a practical, "practice-what-you-teach" approach to methods instruction, the text is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards.
An introduction to ways to remain safe during science experiments, investigations, and explorations.
This practitioner-focused guide to creating identity-safe classrooms presents four categories of core instructional practices: Child-centered teaching ; Classroom relationships ; Caring environments ; Cultivating diversity. The book presents a set of strategies that can be implemented immediately by teachers. It includes a wealth of vignettes taken from identity-safe classrooms as well as reflective exercises that can be completed by individual teachers or teacher teams.
Recent serious and sometimes fatal accidents in chemical research laboratories at United States universities have driven government agencies, professional societies, industries, and universities themselves to examine the culture of safety in research laboratories. These incidents have triggered a broader discussion of how serious incidents can be prevented in the future and how best to train researchers and emergency personnel to respond appropriately when incidents do occur. As the priority placed on safety increases, many institutions have expressed a desire to go beyond simple compliance with regulations to work toward fostering a strong, positive safety culture: affirming a constant commitment to safety throughout their institutions, while integrating safety as an essential element in the daily work of laboratory researchers. Safe Science takes on this challenge. This report examines the culture of safety in research institutions and makes recommendations for university leadership, laboratory researchers, and environmental health and safety professionals to support safety as a core value of their institutions. The report discusses ways to fulfill that commitment through prioritizing funding for safety equipment and training, as well as making safety an ongoing operational priority. A strong, positive safety culture arises not because of a set of rules but because of a constant commitment to safety throughout an organization. Such a culture supports the free exchange of safety information, emphasizes learning and improvement, and assigns greater importance to solving problems than to placing blame. High importance is assigned to safety at all times, not just when it is convenient or does not threaten personal or institutional productivity goals. Safe Science will be a guide to make the changes needed at all levels to protect students, researchers, and staff.
Safer hands-on STEM is essential for every instructor and student. Read the latest information about how to design and maintain safer makerspaces, Fab Labs and STEM labs in both formal and informal educational settings. This book is easy to read and provides practical information with examples for instructors and administrators. If your community or school system is looking to design or modify a facility to engage students in safer hands-on STEM activities then this book is a must read!This book covers important information, such as: Defining makerspaces, Fab Labs and STEM labs and describing their benefits for student learning.· Explaining federal safety standards, negligence, tort law, and duty of care in terms instructors can understand.· Methods for safer professional practices and teaching strategies.· Examples of successful STEM education programs and collaborative approaches for teaching STEM more safely.· Safety Controls (engineering controls, administrative controls, personal protective equipment, maintenance of controls).· Addressing general safety, biological and biotechnology, chemical, and physical hazards.· How to deal with various emergency situations.· Planning and design considerations for a safer makerspace, Fab Lab and STEM lab.· Recommended room sizes and equipment for makerspaces, Fab Labs and STEM labs.· Example makerspace, Fab Lab and STEM lab floor plans.· Descriptions and pictures of exemplar makerspaces, Fab Labs and STEM labs.· Special section answering frequently asked safety questions!