Download Free Safety Critical Electrical Drives Book in PDF and EPUB Free Download. You can read online Safety Critical Electrical Drives and write the review.

This book focuses on one of the most important aspects of electrical propulsion systems – the creation of highly reliable safety-critical traction electrical drives. It discusses the methods and models for analysis and optimization of reliability and fault tolerance indices, based on which, it proposes and assesses methods for improving the availability, fault tolerance and performance of traction electric drives.
The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.
This concise book focuses on the reliability of traction electrical drives. The first chapter presents the Lz-transform approach for the comparative analysis of the fault tolerance of multi-motor electrical drives with multi-phase traction motors. The second chapter then provides an estimate of the value of the operational availability and performance of a diesel–electric multi-drive propulsion system, while the third chapter introduces the concept of a more electric aircraft. Lastly, the fourth chapter analyzes the requirements for multi-phase permanent-magnet motors applicable in various aircraft systems.
Focusing on the vehicle's most important subsystems, this book features an introduction by the editor and 40 SAE technical papers from 2001-2006. The papers are organized in the following sections, which parallel the steps to be followed while building a complete final system: Introduction to Safety-Critical Automotive Systems Safety Process and Standards Requirements, Specifications, and Analysis Architectural and Design Methods and Techniques Prototyping and Target Implementation Testing, Verifications, and Validation Methods
The Safety Critical Systems Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition), IEC 61511 (2015 Edition) and Related Guidance, Fifth Edition presents the latest guidance on safety-related systems that guard workers and the public against injury and death, also discussing environmental risks. This comprehensive resource has been fully revised, with additional material on risk assessment, cybersecurity, COMAH and HAZID, published guidance documents/standards, quantified risk assessment and new worked examples. The book provides a comprehensive guide to the revised IEC 61508 standard as well as the 2016 IEC 61511. This book will have a wide readership, not only in the chemical and process industries, but in oil and gas, power generation, avionics, automotive, manufacturing and other sectors. It is aimed at most engineers, including those in project, control and instrumentation, design and maintenance disciplines. - Provides the only comprehensive guide to IEC 61508 and 61511 (updated for 2016) that ensures engineers are compliant with the latest process safety systems design and operation standards - Presents a real-world approach that helps users interpret the standard, with new case studies and best practice design examples using revised standards - Covers applications of the standard to device design
Safety Critical Systems Handbook: A Straightfoward Guide to Functional Safety, IEC 61508 (2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery IEC 62061 AND ISO 13849, Third Edition, offers a practical guide to the functional safety standard IEC 61508. The book is organized into three parts. Part A discusses the concept of functional safety and the need to express targets by means of safety integrity levels. It places functional safety in context, along with risk assessment, likelihood of fatality, and the cost of conformance. It also explains the life-cycle approach, together with the basic outline of IEC 61508 (known as BS EN 61508 in the UK). Part B discusses functional safety standards for the process, oil, and gas industries; the machinery sector; and other industries such as rail, automotive, avionics, and medical electrical equipment. Part C presents case studies in the form of exercises and examples. These studies cover SIL targeting for a pressure let-down system, burner control system assessment, SIL targeting, a hypothetical proposal for a rail-train braking system, and hydroelectric dam and tidal gates. - The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards - Helps readers understand the process required to apply safety critical systems standards - Real-world approach helps users to interpret the standard, with case studies and best practice design examples throughout
The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling discusses the many factors affect reliability and performance, including engineering design, materials, manufacturing, operations, maintenance, and many more. Reliability is one of the fundamental criteria in engineering systems design, with maintenance serving as a way to support reliability throughout a system's life. Addressing these issues requires information, modeling, analysis and testing. Different techniques are proposed and implemented to help readers analyze various behavior measures (in terms of the functioning and performance) of systems. - Enables mathematicians to convert any process or system into a model that can be analyzed through a specific technique - Examines reliability and mathematical modeling in a variety of disciplines, unlike competitors which typically examine only one - Includes a table of contents with simple to complex examples, starting with basic models and then refining modeling approaches step-by-step
This book presents the latest research in the fields of reliability theory and its applications, providing a comprehensive overview of reliability engineering and discussing various tools, techniques, strategies and methods within these areas. Reliability analysis is one of the most multidimensional topics in the field of systems reliability engineering, and while its rapid development creates opportunities for industrialists and academics, it is also means that it is hard to keep up to date with the research taking place. By gathering findings from institutions around the globe, the book offers insights into the international developments in the field. As well as discussing the current areas of research, it also identifies knowledge gaps in reliability theory and its applications and highlights fruitful avenues for future research. Covering topics from life cycle sustainability to performance analysis of cloud computing, this book is ideal for upper undergraduate and postgraduate researchers studying reliability engineering.
The aim of this book is to present a number of digital and technology solutions to real-world problems across transportation sectors and infrastructures. Nine chapters have been well prepared and organized with the core topics as follows: -A guideline to evaluate the energy efficiency of a vehicle -A guideline to design and evaluate an electric propulsion system -Potential opportunities for intelligent transportation systems and smart cities -The importance of system control and energy-power management in transportation systems and infrastructures -Bespoke modeling tools and real-time simulation platforms for transportation system development This book will be useful to a wide range of audiences: university staff and students, engineers, and business people working in relevant fields.
Almost all the systems in our world, including technical, social, economic, and environmental systems, are becoming interconnected and increasingly complex, and as such they are vulnerable to various risks. Due to this trend, resilience creation is becoming more important to system managers and decision makers, this to ensure sustained performance. In order to be able to ensure an acceptable sustained performance under such interconnectedness and complexity, resilience creation with a system approach is a requirement. Mathematical modeling based approaches are the most common approach for system resilience creation.Mathematical Modelling of System Resilience covers resilience creation for various system aspects including a functional system of the supply chain, overall supply chain systems; various methodologies for modeling system resilience; satellite-based approach for addressing climate related risks, repair-based approach for sustainable performance of an engineering system, and modeling measures of the reliability for a vertical take-off and landing system. Each of the chapters contributes state of the art research for the relevant resilience related topic covered in the chapter. Technical topics covered in the book include:1. Supply chain risk, vulnerability and disruptions 2. System resilience for containing failures and disruptions3. Resiliency considering frequency and intensities of disasters4. Resilience performance index5. Resiliency of electric Traction system6. Degree of resilience7. Satellite observation and hydrological risk8. Latitude of Resilience9. On-line repair for resilience10. Reliability design for Vertical Takeoff and landing Prototype