Download Free Saddlepoint Approximation Methods In Financial Engineering Book in PDF and EPUB Free Download. You can read online Saddlepoint Approximation Methods In Financial Engineering and write the review.

This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables. The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quantitative analysts in financial institutions who strive for effective valuation of prices of exotic financial derivatives and risk positions of portfolios of risky instruments.
While many financial engineering books are available, the statistical aspects behind the implementation of stochastic models used in the field are often overlooked or restricted to a few well-known cases. Statistical Methods for Financial Engineering guides current and future practitioners on implementing the most useful stochastic models used in f
Pricing Models of Volatility Products and Exotic Variance Derivatives summarizes most of the recent research results in pricing models of derivatives on discrete realized variance and VIX. The book begins with the presentation of volatility trading and uses of variance derivatives. It then moves on to discuss the robust replication strategy of variance swaps using portfolio of options, which is one of the major milestones in pricing theory of variance derivatives. The replication procedure provides the theoretical foundation of the construction of VIX. This book provides sound arguments for formulating the pricing models of variance derivatives and establishes formal proofs of various technical results. Illustrative numerical examples are included to show accuracy and effectiveness of analytic and approximation methods. Features Useful for practitioners and quants in the financial industry who need to make choices between various pricing models of variance derivatives Fabulous resource for researchers interested in pricing and hedging issues of variance derivatives and VIX products Can be used as a university textbook in a topic course on pricing variance derivatives
The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.
Rare event probability (10-4 and less) estimation has become a large area of research in the reliability engineering and system safety domains. A significant number of methods have been proposed to reduce the computation burden for the estimation of rare events from advanced sampling approaches to extreme value theory. However, it is often difficult in practice to determine which algorithm is the most adapted to a given problem.Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach provides a broad up-to-date view of the current available techniques to estimate rare event probabilities described with a unified notation, a mathematical pseudocode to ease their potential implementation and finally a large spectrum of simulation results on academic and realistic use cases. Provides a broad overview of the practical approach of rare event methods. Includes algorithms that are applied to aerospace benchmark test cases Offers insight into practical tuning issues
This is a succinct guide to the application and modelling of dependence models or copulas in the financial markets. First applied to credit risk modelling, copulas are now widely used across a range of derivatives transactions, asset pricing techniques and risk models and are a core part of the financial engineer's toolkit.
Backward stochastic differential equations (BSDEs) provide a general mathematical framework for solving pricing and risk management questions of financial derivatives. They are of growing importance for nonlinear pricing problems such as CVA computations that have been developed since the crisis. Although BSDEs are well known to academics, they are less familiar to practitioners in the financial industry. In order to fill this gap, this book revisits financial modeling and computational finance from a BSDE perspective, presenting a unified view of the pricing and hedging theory across all asset classes. It also contains a review of quantitative finance tools, including Fourier techniques, Monte Carlo methods, finite differences and model calibration schemes. With a view to use in graduate courses in computational finance and financial modeling, corrected problem sets and Matlab sheets have been provided. Stéphane Crépey’s book starts with a few chapters on classical stochastic processes material, and then... fasten your seatbelt... the author starts traveling backwards in time through backward stochastic differential equations (BSDEs). This does not mean that one has to read the book backwards, like a manga! Rather, the possibility to move backwards in time, even if from a variety of final scenarios following a probability law, opens a multitude of possibilities for all those pricing problems whose solution is not a straightforward expectation. For example, this allows for framing problems like pricing with credit and funding costs in a rigorous mathematical setup. This is, as far as I know, the first book written for several levels of audiences, with applications to financial modeling and using BSDEs as one of the main tools, and as the song says: "it's never as good as the first time". Damiano Brigo, Chair of Mathematical Finance, Imperial College London While the classical theory of arbitrage free pricing has matured, and is now well understood and used by the finance industry, the theory of BSDEs continues to enjoy a rapid growth and remains a domain restricted to academic researchers and a handful of practitioners. Crépey’s book presents this novel approach to a wider community of researchers involved in mathematical modeling in finance. It is clearly an essential reference for anyone interested in the latest developments in financial mathematics. Marek Musiela, Deputy Director of the Oxford-Man Institute of Quantitative Finance
Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume “Stochastic Analysis 2010” provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
Contains Nearly 100 Pages of New MaterialThe recent financial crisis has shown that credit risk in particular and finance in general remain important fields for the application of mathematical concepts to real-life situations. While continuing to focus on common mathematical approaches to model credit portfolios, Introduction to Credit Risk Modelin
Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.