Download Free Russian Mathematicians In The 20th Century Book in PDF and EPUB Free Download. You can read online Russian Mathematicians In The 20th Century and write the review.

In the 20th century, many mathematicians in Russia made great contributions to the field of mathematics. This invaluable book, which presents the main achievements of Russian mathematicians in that century, is the first most comprehensive book on Russian mathematicians. It has been produced as a gesture of respect and appreciation for those mathematicians and it will serve as a good reference and an inspiration for future mathematicians. It presents differences in mathematical styles and focuses on Soviet mathematicians who often discussed “what to do” rather than “how to do it”. Thus, the book will be valued beyond historical documentation.The editor, Professor Yakov Sinai, a distinguished Russian mathematician, has taken pains to select leading Russian mathematicians — such as Lyapunov, Luzin, Egorov, Kolmogorov, Pontryagin, Vinogradov, Sobolev, Petrovski and Krein — and their most important works. One can, for example, find works of Lyapunov, which parallel those of Poincaré; and works of Luzin, whose analysis plays a very important role in the history of Russian mathematics; Kolmogorov has established the foundations of probability based on analysis. The editor has tried to provide some parity and, at the same time, included papers that are of interest even today.The original works of the great mathematicians will prove to be enjoyable to readers and useful to the many researchers who are preserving the interest in how mathematics was done in the former Soviet Union.
This book contains several contributions on the most outstanding events in the development of twentieth century mathematics, representing a wide variety of specialities in which Russian and Soviet mathematicians played a considerable role. The articles are written in an informal style, from mathematical philosophy to the description of the development of ideas, personal memories and give a unique account of personal meetings with famous representatives of twentieth century mathematics who exerted great influence in its development. This book will be of great interest to mathematicians, who will enjoy seeing their own specialities described with some historical perspective. Historians will read it with the same motive, and perhaps also to select topics for future investigation.
In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.
In the 20th century, many mathematicians in Russia made great contributions to the field of mathematics. This invaluable book, which presents the main achievements of Russian mathematicians in that century, is the first most comprehensive book on Russian mathematicians. It has been produced as a gesture of respect and appreciation for those mathematicians and it will serve as a good reference and an inspiration for future mathematicians. It presents differences in mathematical styles and focuses on Soviet mathematicians who often discussed “what to do” rather than “how to do it”. Thus, the book will be valued beyond historical documentation.The editor, Professor Yakov Sinai, a distinguished Russian mathematician, has taken pains to select leading Russian mathematicians — such as Lyapunov, Luzin, Egorov, Kolmogorov, Pontryagin, Vinogradov, Sobolev, Petrovski and Krein — and their most important works. One can, for example, find works of Lyapunov, which parallel those of Poincaré; and works of Luzin, whose analysis plays a very important role in the history of Russian mathematics; Kolmogorov has established the foundations of probability based on analysis. The editor has tried to provide some parity and, at the same time, included papers that are of interest even today.The original works of the great mathematicians will prove to be enjoyable to readers and useful to the many researchers who are preserving the interest in how mathematics was done in the former Soviet Union.
Volume I, entitled Russian Mathematics Education: History and World Significance, consists of several chapters written by distinguished authorities from Russia, the United States and other nations. It Examines the hostory of mathematics education in Russia and its relevance to mathematics education throughout the world. The second volume, entitled Russian Mathematics education is highly respected for its achievements and was once very influential internationally, it has never been explored in depth. This publication does just that. --Book Jacket.
This anthology, consisting of two volumes, is intended to equip background researchers, practitioners and students of international mathematics education with intimate knowledge of mathematics education in Russia. Volume I, entitled The History and Relevance of Russian Mathematics Education, consists of several chapters written by distinguished authorities like Jeremy Kilpatrick and Bruce Vogeli. It examines the history of mathematics education in Russia and its relevance to mathematics education throughout the world. The second volume, entitled Programs and Practices will examine specific Russian programs in mathematics, their impact and methodological innovations. Although Russian mathematics education is highly respected for its achievements and was once very influential internationally, it has never been explored in depth. This publication does just that.
In 2006, an eccentric Russian mathematician named Grigori Perelman solved one of the world's greatest intellectual puzzles. The Poincare conjecture is an extremely complex topological problem that had eluded the best minds for over a century. In 2000, the Clay Institute in Boston named it one of seven great unsolved mathematical problems, and promised a million dollars to anyone who could find a solution. Perelman was awarded the prize this year - and declined the money. Journalist Masha Gessen was determined to find out why. Drawing on interviews with Perelman's teachers, classmates, coaches, teammates, and colleagues in Russia and the US - and informed by her own background as a math whiz raised in Russia - she set out to uncover the nature of Perelman's astonishing abilities. In telling his story, Masha Gessen has constructed a gripping and tragic tale that sheds rare light on the unique burden of genius.
This volume contains articles on the history of Soviet mathematics, many of which are personal accounts by mathematicians who witnessed and contributed to the turbulent and glorious years of Moscow mathematics. The articles in the book focus on mathematical developments in that era, the personal lives of Russian mathematicians, and political events that shaped the course of scientific work in the Soviet Union. Important contributions include an article about Luzin and his school, based in part on documents that were released only after perestroika, and two articles on Kolmogorov. The volume concludes with annotated bibliographies in English and Russian for further reading. The revised edition is appended by an article of Tikhomirov, which provides an update and general overview of 20th-century Moscow mathematics, and it also includes an Index of Names. This book should appeal to mathematicians, historians, and anyone else interested in Soviet mathematical history.
Philanthropic societies funded by the Rockefeller family were prominent in the social history of the twentieth century, for their involvement in medicine and applied science. This book provides the first detailed study of their relatively brief but nonetheless influential foray into the field of mathematics.
The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.