Download Free Rural Electrification Through Decentralised Off Grid Systems In Developing Countries Book in PDF and EPUB Free Download. You can read online Rural Electrification Through Decentralised Off Grid Systems In Developing Countries and write the review.

More than 1.3 billion people worldwide lack access to electricity. Although extension of the electricity grid remains the preferred mode of electrification, off-grid electrification can offer a solution to such cases. Rural Electrification through Decentralised Off-grid Systems in Developing Countries provides a review of rural electrification experiences with an emphasis on off-grid electrification and presents business-related aspects including participatory arrangements, financing, and regulatory governance. Organized in three parts, Rural Electrification through Decentralised Off-grid Systems in Developing Countries provides comprehensive coverage and state-of-the art reviews which appraise the reader of the latest trend in the thinking. The first part presents the background information on electricity access, discusses the developmental implications of lack of electricity infrastructure and provides a review of alternative off-grid technologies. The second part presents a review of experiences from various regions (South Asia, China, Africa, South East Asia and South America). Finally, the third part deals with business dimensions and covers participatory business models, funding challenges for electrification and regulatory and governance issues. Based on the research carried out under the EPSRC/ DfID funded research grant for off-grid electrification in South Asia, Rural Electrification through Decentralised Off-grid Systems in Developing Countries provides a multi-disciplinary perspective of the rural electrification challenge through off-grid systems. Providing a practical introduction for students, this is also a key reference for engineers and governing bodies working with off-grid electrification.
In recognition of the fact that billions of people in the developing world do not have access to clean energies, the United Nations launched the Sustainable Energy for All Initiative to achieve universal energy access by 2030. Although electricity grid extension remains the most prevalent way of providing access, it is now recognized that the central grid is unlikely to reach many remote areas in the near future. At the same time, individual solutions like solar home systems tend to provide very limited services to consumers. Mini-grids offer an alternative by combining the benefits of a grid-based solution with the potential for harnessing renewable energies at the local level. The purpose of this book is to provide in-depth coverage of the use of mini-grids for rural electrification in developing countries, taking into account the technical, economic, environmental and governance dimensions and presenting case studies from South Asia. This book reports on research carried out by a consortium of British and Indian researchers on off-grid electrification in South Asia. It provides state-of-the art technical knowledge on mini-grids and micro-grids including renewable energy integration (or green mini-grids), smart systems for integration with the central grid, and standardization of systems. It also presents essential analytical frameworks and approaches that can be used to analyze the mini-grids comprehensively including their techno-economic aspects, financial viability and regulatory issues. The case studies drawn from South Asia demonstrate the application of the framework and showcase various successful efforts to promote mini-grids in the region. It also reports on the design and implementation of a demonstration project carried out by the team in a cluster of villages in Odisha (India). The book’s multi-disciplinary approach facilitates understanding of the relevant practical dimensions of mini-grid systems, such as demand creation (through interventions in livelihood generation and value chain development), financing, regulation, and smart system design. Its state-of-the art knowledge, integrated methodological framework, simulation exercises and real-life case analysis will allow the reader to analyze and appreciate the mini-grid-related activities in their entirety. The book will be of interest to researchers, graduate students, practitioners and policy makers working in the area of rural electrification in developing countries.
This book provides students and practicing engineers with a comprehensive guide to off-grid electrification: from microgrids and energy kiosks to solar home systems and solar lanterns. As the off-grid electrification industry grows, universities are starting and expanding courses and programs in humanitarian engineering and appropriate technology. However, there is no textbook that serves this growing market. This book fills that gap by providing a technical foundation of off-grid electrical systems, putting into context the technical aspects for developing countries, and discussing best practices by utilizing real-world data. Chapters expertly integrate the technical aspects of off-grid systems with lessons learned from industry-practitioners taking a pragmatic, data-driven perspective. A variety of off-grid systems and technologies are discussed, including solar, wind, hydro, generator sets, biomass systems, battery storage and converters. Realistic examples, case studies and practical considerations from actual systems highlight the interaction of off-grid systems with the economic, environmental, social and broader development aspects of rural electrification. Whole chapters are dedicated to the operation and control of mini-grids, load and resource estimation, and design of off-grid systems. Special topics focused on electricity access in developing countries are included, such as energy use in rural communities, technical and economic considerations of grid extension, electricity theft, metering, and best practices devoted to common problems. Each chapter is instructor friendly and contains illustrative examples and problems that reinforce key concepts. Complex, open-ended design problems throughout the book challenge the reader to think critically and deeply. The book is appropriate for use in advanced undergraduate and graduate courses related to electrical and energy engineering, humanitarian engineering, and appropriate technology. Provides a technical foundation of off-grid electrical systems; Contextualizes the technical aspects for developing countries; Captures the current and state-of-the art in this rapidly developing field.
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.
Indonesia has achieved an impressive 84% electrification ratio, but faces significant challenges in reaching the remaining 16% of its households. This report describes Indonesia’s electrification environment and identifies barriers to achieving universal electricity access. Principles drawn from international best practices such as government commitment, enabling institutional environments, adequate and sustainable financing, and stakeholder coordination are discussed in the context of Indonesia’s energy sector. The report gives recommendations for establishing service standards, streamlining financing, setting appropriate targets, and monitoring and evaluation, as well as near-term steps to help achieve universal electricity access.
This guidebook documents the experiences and lessons learned from developing 12 pilot mini-grid systems for off-grid energy access in Myanmar. Unelectrified rural communities typically located 10 kilometers from the national grid and without prospects of being connected to the grid in the next 5 to 10 years have been chosen for the project. This guidebook shares training materials and knowledge on the major aspects of minigrid development for rural electrification. Further, it highlights the importance of community participation and discusses the main renewable energy technologies that are suitable for mini-grid development in Myanmar including solar, hydro, and biomass. This guidebook is intended to serve government officials, renewable energy developers, and potential investors in the development of mini-grid projects in Myanmar.
This book offers a comprehensive overview of energy sectors in emerging African and Latin American nations, providing a one-stop source of information and analysis of energy sectors that differ radically from those of developed countries. It focuses on how indigenous energy sources can be used within a systems framework to enhance each nation’s economic prosperity, secure their energy future and reduce global carbon emissions. It begins by examining the current energy trends in Africa and Latin America, and the constraints that current practices place on meeting future energy needs. Further chapters present a deeper analyses of each technology adapted to these regions and a description of 94 selected case examples recently published in the scientific literature (2014-2016) and covering almost all countries to highlight energy experiences that could serve as engines for developing low-carbon energy technologies across the two regions. These issues are elucidated by a large number of illustrations and tables to offer valuable insights into the topics and technologies discussed. The book enables students, researchers and professionals in energy to better understand the energy context in Africa and Latin America, and helps define strategies for supporting these regions in introducing low-carbon energy technologies that supplement indigenous sources in a manner that enhances long-term economic prosperity. It is also intended for consulting companies and government agencies involved in the energy sector, as well as environmental science and energy management students.
Reflecting the rapid growth of nanotechnology research and the potential impact of the growing energy crisis, Energy Efficiency and Renewable Energy Through Nanotechnology provides comprehensive coverage of cutting-edge research in the energy-related fields of nanoscience and nanotechnology, which aim to improve energy efficiency and the generation of renewable energy. Energy Efficiency and Renewable Energy Through Nanotechnology tightly correlates nanotechnology with energy issues in a general, comprehensive way that makes it not only suitable as a desk reference for research, but also as a knowledge resource for the non-expert general public. Readers will find Energy Efficiency and Renewable Energy Through Nanotechnology useful in a variety of ways, ranging from the creation of energy policy, to energy research development, and to education in nanotechnology and its application to energy-related problems. It can also be used as a primary or supplementary textbook for energy-related courses for advanced undergraduate and graduate students.
The evidence suggests that many solar programs are being designed and implemented in isolation and without reliance on published guidelines or the experience gained by others. The conclusion is obvious: the likelihood of a program being successful would be greatly improved if program implementers were made more aware of best practice guidelines and of the lessons and experience learned by others in implementing previous programs. Furthermore, the best practice guidelines not only need to be readily available but need to describe the stages, issues and the stakeholders’ roles in designing and implementing a SHS program. This book showcases a detailed road map that has been developed for the implementation of rural electrification projects in developing countries using solar PV. Features of this book will be case studies derived from personal participatory observation of the authors on Solar Home Systems, their impact, their advantages and disadvantages and their operation.
Expanding on the first edition, ‘Energy: Production, Conversion, Storage, Conservation, and Coupling (2nd Ed.)’ provides readers with a practical understanding of the major aspects of energy. It includes extended chapters with revised data and additional practice problems as well as a new chapter examining sustainability and sustainable energy technologies. Like the first edition, it also explores topics such as energy production, conservation of energy, energy storage and energy coupling. Written for students across a range of engineering and science disciplines, it provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. * Presents a clear introduction to the basic properties, forms and sources of energy * Includes a range of supporting figures, tables and thermodynamic diagrams * Provides course instructors with a solution manual for practice problems