Download Free Running On Waves Book in PDF and EPUB Free Download. You can read online Running On Waves and write the review.

It's the summer of 1994. O.J. Simpson is chased in his white Bronco, the Beastie Boys have just released Ill Communication, and the Major League Baseball strike is looming. For 19-year-old Colin Brennan living in Silver Shores Cape Cod, Summertime should be one of the best times of his young life. But the beautiful scenery is instead a constant reminder of what happened the previous year. Colin is haunted by the memory of a tragic accident that took the lives of his two best friends, in a story of unresolved grief, substance abuse, break-ups, baseball, brotherly love, and the thorny road to redemption.
Alexander Grin was writing after the revolution, living in Crimea. Content of the novel is based upon background of sea travel, heroes have portraits for the characters. Action is running in the "invented" places, whose names resemble names of the real cities in Crimea. Novel was written in 1928.
Running on Waves is an educational book and workbook in one volume. Topics include sea life, navigation, geography, history, alphabet, tracing, drawing, other educational activities.
Ultrasound has found an increasing number of applications in recent years due to greatly increased computing power. Ultrasound devices are often preferred over other devices because of their lower cost, portability, and non-invasive nature. Patients using ultrasound can avoid the dangers of radiological imaging devices such as x-rays, CT scans, and radioactive media injections. Ultrasound is also a preferred and practical method of detecting material fatique and defects in metals, composites, semiconductors, wood, etc. - Detailed appendices contain useful formulas and their derivations, technical details of relevant theories - The FAQ format is used where a concept in one answer leads to a new Q
The Boussinesq equation is the first model of surface waves in shallow water that considers the nonlinearity and the dispersion and their interaction as a reason for wave stability known as the Boussinesq paradigm. This balance bears solitary waves that behave like quasi-particles. At present, there are some Boussinesq-like equations. The prevalent part of the known analytical and numerical solutions, however, relates to the 1d case while for multidimensional cases, almost nothing is known so far. An exclusion is the solutions of the Kadomtsev-Petviashvili equation. The difficulties originate from the lack of known analytic initial conditions and the nonintegrability in the multidimensional case. Another problem is which kind of nonlinearity will keep the temporal stability of localized solutions. The system of coupled nonlinear Schroedinger equations known as well as the vector Schroedinger equation is a soliton supporting dynamical system. It is considered as a model of light propagation in Kerr isotropic media. Along with that, the phenomenology of the equation opens a prospect of investigating the quasi-particle behavior of the interacting solitons. The initial polarization of the vector Schroedinger equation and its evolution evolves from the vector nature of the model. The existence of exact (analytical) solutions usually is rendered to simpler models, while for the vector Schroedinger equation such solutions are not known. This determines the role of the numerical schemes and approaches. The vector Schroedinger equation is a spring-board for combining the reduced integrability and conservation laws in a discrete level. The experimental observation and measurement of ultrashort pulses in waveguides is a hard job and this is the reason and stimulus to create mathematical models for computer simulations, as well as reliable algorithms for treating the governing equations. Along with the nonintegrability, one more problem appears here - the multidimensionality and necessity to split and linearize the operators in the appropriate way.
The developments in physics, biology and astronomy, as well as radar and communication technology, remote sensing and spectroscopy have led to a sharp increase in the investigations of electromagnetic millimeter and submillimeter waves with the lengths 10--1 and 1--0.1 mm. These volumes reflect the results of extensive research in this field and attempt to destroy stereotypes established during the long years of large-scale modeling in the millimeter and submillimeter wavelength ranges and to develop new concepts. The first volume (Open Structures) deals with the results of theoretical and experimental studies of open electrodynamic structures (open waveguides, open resonators, diffractional gratings) allowing the determination of the characteristics of various devices used in millimeter and submillimeter technology. The second volume (Sources. Element Base. Radio Systems: Novel Scientific Trends) presents the problems of creating independent units and radiosystems of the millimeter and submillimeter wavelength ranges and the justification of their physical operating principles. This includes the mechanism of generating volume waves by electron flows moving close to a grating, excitation of fields in open resonators and waveguides with inclusion, and other phenomena.