Download Free Routing Algorithms For Wireless Sensor Networks Book in PDF and EPUB Free Download. You can read online Routing Algorithms For Wireless Sensor Networks and write the review.

Wireless Sensor Networks have a wide range of applications in different areas. Their main constraint is the limited and irreplaceable power source of the sensor nodes. In many applications, energy conservation of the sensor nodes and their replacement or replenishment due to the hostile nature of the environment is the most challenging issue. Energy efficient clustering and routing are the two main important topics studied extensively for this purpose. This book focuses on the energy efficient clustering and routing with a great emphasis on the evolutionary approaches. It provides a comprehensive and systematic introduction of the fundamentals of WSNs, major issues and effective solutions.
A one-stop resource for the use of algorithms and protocols in wireless sensor networks From an established international researcher in the field, this edited volume provides readers with comprehensive coverage of the fundamental algorithms and protocols for wireless sensor networks. It identifies the research that needs to be conducted on a number of levels to design and assess the deployment of wireless sensor networks, and provides an in-depth analysis of the development of the next generation of heterogeneous wireless sensor networks. Divided into nineteen succinct chapters, the book covers: mobility management and resource allocation algorithms; communication models; energy and power consumption algorithms; performance modeling and simulation; authentication and reputation mechanisms; algorithms for wireless sensor and mesh networks; and algorithm methods for pervasive and ubiquitous computing; among other topics. Complete with a set of challenging exercises, this book is a valuable resource for electrical engineers, computer engineers, network engineers, and computer science specialists. Useful for instructors and students alike, Algorithms and Protocols for Wireless Sensor Networks is an ideal textbook for advanced undergraduate and graduate courses in computer science, electrical engineering,and network engineering.
This book constitutes the refereed proceedings of the 9th International Conference on Distributed Computing and Internet Technology, ICDCIT 2013, held in Bhubaneswar, India, in February 2013. The 40 full papers presented together with 5 invited talks in this volume were carefully reviewed and selected from 164 submissions. The papers cover various research aspects in distributed computing, internet technology, computer networks, and machine learning.
This book contains selected papers from the International Conference on Progress in Automotive Technologies (ICPAT) 2019. The contents focus on several aspects of the automobile industry from design to manufacture, and the challenges involved therein. The book covers latest research trends in the automotive domain including topics such as aerodynamic design, vehicle sensors and electronics, engine combustion modeling, noise and vibration in vehicles, electric and hybrid vehicles, automotive tribology, and battery and fuel cell technologies. The book highlights the use of emerging technologies to tackle the growing environmental challenges. This book will be of interest to students, researchers as well as professionals working in automotive engineering and allied fields.
Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.
This book constitutes the refereed proceedings of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2006, held in Brussels, Belgium, in September 2006. The 27 revised full papers, 23 revised short papers, and 12 extended abstracts presented were carefully reviewed and selected from 115 submissions.
This book constitutes the proceedings of three International Conferences, NeCoM 2011, on Networks & Communications, WeST 2011, on Web and Semantic Technology, and WiMoN 2011, on Wireless and Mobile Networks, jointly held in Chennai, India, in July 2011. The 74 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers address all technical and practical aspects of networks and communications in wireless and mobile networks dealing with issues such as network protocols and wireless networks, data communication technologies, and network security; they present knowledge and results in theory, methodology and applications of the Web and semantic technologies; as well as current research on wireless and mobile communications, networks, protocols and on wireless and mobile security.
Master's Thesis from the year 2012 in the subject Computer Science - Technical Computer Science, grade: 70%, Griffith College Dublin (Faculty of Computing ), course: MSC Computing , language: English, abstract: Modern wireless sensor network can be expanded into large geographical areas via cheap sensor devices which can sustain themselves itself with very a low power usage. The networking capability enables these sensor nodes to incorporate, collaborates, and coordinates with among each other , and this is a fundamental shift in the field of networks which differentiates sensor network nodes form other networks such as IP-datagram, Ad-Hoc and so on. Currently, routing in the wireless sensor network faces multiple challenges, such as new scalability, coverage, packet loss, interference, real-time audio and video real time streaming, harsh weather environments, energy constraints and so forth. Network routing can be called an amalgamation of routing protocol and routing algorithm. The job of the routing protocols is to provide a cohesive view of network nodes topology while routing algorithm provides the intelligence in terms of optimal path calculation. We set out to conduct a detailed study of routing protocols in a IP-datagram, wireless ad-hoc and sensor network, and also accomplished routing protocols comparison against the chosen network performance factor dropped packet ratio. Routing protocols play an important role in modern wireless communication networks. Routing protocols’ performance can be measured by a number of factors such as packet dropped rate and so forth. Rumour and Optimal Spinal Routing algorithms are compared using ShoX simulation and the results and analysis are based upon the simulation experiments.
Wireless sensor networks (WSNs) have emerged as a phenomenon of the twenty-first century with numerous kinds of sensor being developed for specific applications. The origins of WSNs can, however, be traced back to the early days of connectivity between computers and their peripherals. Work with distributed sensor networks is evidenced in the literature during the latter part of the 1970s, continuing in functionality increases in the 1980s and 1990s. As a configuration of independent devices in a data communications network, WSNs are now pre-eminent as working solutions to numerous precision data collection situations where software control of instruments and routing protocols are needed. In this book, the authors have chosen a selection of specific topics relating to WSNs: their design, development, implementation and function. Some operating topics are addressed such as power management, data interchange protocols, instrument reliability and system security. Other topics are more application oriented, where particular hardware and software configurations are described to deliver system solutions for specific needs. All are clearly written with considerable detail relating to each of the issues addressed by the authors. Each of the chapters provides a rationale for the topic being covered and some general WSN details where appropriate. The citations used in the chapters are comprehensively referred to, which adds depth to the information being presented.
This book provides a comprehensive yet easy coverage of ad hoc and sensor networks and fills the gap of existing literature in this growing field. It emphasizes that there is a major interdependence among various layers of the network protocol stack. Contrary to wired or even one-hop cellular networks, the lack of a fixed infrastructure, the inherent mobility, the wireless channel, and the underlying routing mechanism by ad hoc and sensor networks introduce a number of technological challenges that are difficult to address within the boundaries of a single protocol layer. All existing textbooks on the subject often focus on a specific aspect of the technology, and fail to provide critical insights on cross-layer interdependencies. To fully understand these intriguing networks, one need to grasp specific solutions individually, and also the many interdependencies and cross-layer interactions.