Download Free Rough Multiple Objective Decision Making Book in PDF and EPUB Free Download. You can read online Rough Multiple Objective Decision Making and write the review.

Under intense scrutiny for the last few decades, Multiple Objective Decision Making (MODM) has been useful for dealing with the multiple-criteria decisions and planning problems associated with many important applications in fields including management science, engineering design, and transportation. Rough set theory has also proved to be an effective mathematical tool to counter the vague description of objects in fields such as artificial intelligence, expert systems, civil engineering, medical data analysis, data mining, pattern recognition, and decision theory. Rough Multiple Objective Decision Making is perhaps the first book to combine state-of-the-art application of rough set theory, rough approximation techniques, and MODM. It illustrates traditional techniques—and some that employ simulation-based intelligent algorithms—to solve a wide range of realistic problems. Application of rough theory can remedy two types of uncertainty (randomness and fuzziness) which present significant drawbacks to existing decision-making methods, so the authors illustrate the use of rough sets to approximate the feasible set, and they explore use of rough intervals to demonstrate relative coefficients and parameters involved in bi-level MODM. The book reviews relevant literature and introduces models for both random and fuzzy rough MODM, applying proposed models and algorithms to problem solutions. Given the broad range of uses for decision making, the authors offer background and guidance for rough approximation to real-world problems, with case studies that focus on engineering applications, including construction site layout planning, water resource allocation, and resource-constrained project scheduling. The text presents a general framework of rough MODM, including basic theory, models, and algorithms, as well as a proposed methodological system and discussion of future research.
Decision makers usually face multiple, conflicting objectives and the complicated fuzzy-like environments in the real world. What are the fuzzy-like environments? How do we model the multiple objective decision making problems under fuzzy-like environments? How do you deal with these models? In order to answer these questions, this book provides an up-to-date methodology system for fuzzy-like multiple objective decision making, which includes modelling system, model analysis system, algorithm system and application system in structure optimization problem, selection problem, purchasing problem, inventory problem, logistics problem and so on. Researchers, practitioners and students in management science, operations research, information science, system science and engineering science will find this work a useful reference.
What are the random-like phenomena that can be found everywhere in real-life world? When carrying out a random sampling survey on the traffic situation, we often obtain some descriptive results such as approximately expedite, a little crowded and so on, therefore, the average level should be regarded as the random fuzzy phenomenon, which is one of the random-like phenomena. Decision makers usually need to make the decision for these problems with random-like phenomena. Which model should be constructed for them? How should we handle these models to find the optimal strategy? How can we apply these models to solve real-life problems with random-like phenomena? In order to answer these questions, this book provides an up-to-date methodology system 5MRP for random-like multiple objective decision making, which includes problem system with random-like phenomena, model system with random-like coefficients, research system with random-like uncertain methods. Some practical applications are also provided to illustrate the effectiveness of the proposed methodology system. Researchers, practitioners and students in systems science, economics, mathematics, information, engineering and MS/OR will get a lot of useful references from this research monograph.
Multi-objective programming (MOP) can simultaneously optimize multi-objectives in mathematical programming models, but the optimization of multi-objectives triggers the issue of Pareto solutions and complicates the derived answers. To address these problems, researchers often incorporate the concepts of fuzzy sets and evolutionary algorithms into M
Are we safer from terrorism today and is our homeland security money well spent? This book offers answers and more.
The book provides insights in the decision-making for implementing strategies in various spheres of real-world issues. It integrates optimal policies in various decision­making problems and serves as a reference for researchers and industrial practitioners. Furthermore, the book provides sound knowledge of modelling of real-world problems and solution procedure using the various optimisation and statistical techniques for making optimal decisions. The book is meant for teachers, students, researchers and industrialists who are working in the field of materials science, especially operations research and applied statistics.
Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems. Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting. Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
This book describes how a confused decision maker, who wishes to make a reasonable and responsible choice among alternatives, can systematically probe their thoughts and feelings in order to make the critically important trade-offs between incommensurable objectives.
This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.