Download Free Rough Fuzzy Image Analysis Book in PDF and EPUB Free Download. You can read online Rough Fuzzy Image Analysis and write the review.

Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.
Containing twenty six contributions by experts from all over the world, this book presents both research and review material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, linguistic, fuzzy-set-theoretic, neural, evolutionary computing and rough-set-theoretic to hybrid soft computing, with significant real-life applications.Pattern Recognition and Big Data provides state-of-the-art classical and modern approaches to pattern recognition and mining, with extensive real life applications. The book describes efficient soft and robust machine learning algorithms and granular computing techniques for data mining and knowledge discovery; and the issues associated with handling Big Data. Application domains considered include bioinformatics, cognitive machines (or machine mind developments), biometrics, computer vision, the e-nose, remote sensing and social network analysis.
Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. - Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence - Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain - Highlights challenges and the future scope for soft computing based medical analysis and processing techniques
This book presents an introduction to new and important research in the images processing and analysis area. It is hoped that this book will be useful for scientists and students involved in many aspects of image analysis. The book does not attempt to cover all of the aspects of Computer Vision, but the chapters do present some state of the art examples.
Information on integrating soft computing techniques into video surveillance is widely scattered among conference papers, journal articles, and books. Bringing this research together in one source, Handbook on Soft Computing for Video Surveillance illustrates the application of soft computing techniques to different tasks in video surveillance. Wor
A synergy of techniques on hybrid intelligence for real-life image analysis Hybrid Intelligence for Image Analysis and Understanding brings together research on the latest results and progress in the development of hybrid intelligent techniques for faithful image analysis and understanding. As such, the focus is on the methods of computational intelligence, with an emphasis on hybrid intelligent methods applied to image analysis and understanding. The book offers a diverse range of hybrid intelligence techniques under the umbrellas of image thresholding, image segmentation, image analysis and video analysis. Key features: Provides in-depth analysis of hybrid intelligent paradigms. Divided into self-contained chapters. Provides ample case studies, illustrations and photographs of real-life examples to illustrate findings and applications of different hybrid intelligent paradigms. Offers new solutions to recent problems in computer science, specifically in the application of hybrid intelligent techniques for image analysis and understanding, using well-known contemporary algorithms. The book is essential reading for lecturers, researchers and graduate students in electrical engineering and computer science.
The two-volume set LNCS 6978 + LNCS 6979 constitutes the proceedings of the 16th International Conference on Image Analysis and Processing, ICIAP 2011, held in Ravenna, Italy, in September 2011. The total of 121 papers presented was carefully reviewed and selected from 175 submissions. The papers are divided into 10 oral sessions, comprising 44 papers, and three post sessions, comprising 77 papers. They deal with the following topics: image analysis and representation; image segmentation; pattern analysis and classification; forensics, security and document analysis; video analysis and processing; biometry; shape analysis; low-level color image processing and its applications; medical imaging; image analysis and pattern recognition; image and video analysis and processing and its applications.
Emerging Trends in Image Processing, Computer Vision, and Pattern Recognition discusses the latest in trends in imaging science which at its core consists of three intertwined computer science fields, namely: Image Processing, Computer Vision, and Pattern Recognition. There is significant renewed interest in each of these three fields fueled by Big Data and Data Analytic initiatives including but not limited to; applications as diverse as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. These three core topics discussed here provide a solid introduction to image processing along with low-level processing techniques, computer vision fundamentals along with examples of applied applications and pattern recognition algorithms and methodologies that will be of value to the image processing and computer vision research communities. Drawing upon the knowledge of recognized experts with years of practical experience and discussing new and novel applications Editors' Leonidas Deligiannidis and Hamid Arabnia cover; - Many perspectives of image processing spanning from fundamental mathematical theory and sampling, to image representation and reconstruction, filtering in spatial and frequency domain, geometrical transformations, and image restoration and segmentation - Key application techniques in computer vision some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication - Pattern recognition algorithms including but not limited to; Supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - How to use image processing and visualization to analyze big data. - Discusses novel applications that can benefit from image processing, computer vision and pattern recognition such as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. - Covers key application techniques in computer vision from fundamentals to mid to high level processing some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication. - Presents a number of pattern recognition algorithms and methodologies including but not limited to; supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - Explains how to use image processing and visualization to analyze big data.
The concept is fundamental in statistics and tailors to the emergence of collective behaviours. Communication then asks for uncertainty considerations - noise, indeterminacy or approximation - and its wider impact on the couple perception-action. Clustering being all about uncertainty handling, data set representation appears not to be the only solution: Introducing hierarchies with adapted metrics, a priori pre-improving the data resolution are other methods in need of evaluation. The technology together with increasing semantics enables to involve synthetic data as simulation results for the multiplication of sources. Part B plays with another couple important for complex systems: state vs. transition. State-first descriptions would characterize physics, while transition-first would fit biology. That could stem from life producing dynamical systems in essence.