Download Free Rotodynamic Centrifugal Pumps For Design And Application Book in PDF and EPUB Free Download. You can read online Rotodynamic Centrifugal Pumps For Design And Application and write the review.

This book provides a brief but thorough account of the basic principles of good pump design. It presents the basic hydraulic equations, including cavitation, and discusses the principles that underlie the correct performance of centrifugal pumps and axial machines, giving two design examples. It then outlines analytical methods for flow calculations, including special techniques used in computer aided design. Shafts, bearings, seals and drives, design for difficult fluids, and codes and practices are treated in the last three chapters.
Centrifugal Pumps: Design and Application, Second Edition focuses on the design of chemical pumps, composite materials, manufacturing techniques employed in nonmetallic pump applications, mechanical seals, and hydraulic design. The publication first offers information on the elements of pump design, specific speed and modeling laws, and impeller design. Discussions focus on shape of head capacity curve, pump speed, viscosity, specific gravity, correction for impeller trim, model law, and design suggestions. The book then takes a look at general pump design, volute design, and design of multi-stage casing. The manuscript examines double-suction pumps and side-suction design, net positive suction head, and vertical pumps. Topics include configurations, design features, pump vibration, effect of viscosity, suction piping, high speed pumps, and side suction and suction nozzle layout. The publication also ponders on high speed pumps, double-case pumps, hydraulic power recovery turbines, and shaft design and axial thrust. The book is a valuable source of data for pump designers, students, and rotating equipment engineers.
Practical Centrifugal Pumps is a comprehensive guide to pump construction, application, operation, maintenance and management issues. Coverage includes pump classifications, types and criteria for selection, as well as practical information on the use of pumps, such as how to read pump curves and cross reference. Throughout the book the focus is on best practice and developing the skills and knowledge required to recognise and solve pump problems in a structured and confident manner. Case studies provide real-world scenarios covering the design, set up, troubleshooting and maintenance of pumps.· A comprehensive guide to pump construction, design, installation, operation, troubleshooting and maintenance.· Develop real-world knowhow and practical skills through seven real-world case studies· Coverage includes pump classifications, types and criteria for selection, as well as practical information on the use of pumps
Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. Includes a wide range of industrial application problems and worked out example problems. Applies thermal analysis techniques to generate design specification and ratings. Demonstrates how to design thermal systems and components to meet engineering specifications. Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.
Written by an experienced engineer, this book contains practical information on all aspects of pumps including classifications, materials, seals, installation, commissioning and maintenance. In addition you will find essential information on units, manufacturers and suppliers worldwide, providing a unique reference for your desk, R&D lab, maintenance shop or library.* Includes maintenance techniques, helping you get the optimal performance out of your pump and reducing maintenance costs * Will help you to understand seals, couplings and ancillary equipment, ensuring systems are set up properly to save time and money * Provides useful contacts for manufacturers and suppliers who specialise in pumps, pumping and ancillary equipment
Cavitation, the result of insufficient pressure in a pump inlet, is not only the major cause of loss in pump performance, but also of reduced cost effectiveness. This practical guide provides straight forward, up to the minute advice on all aspects of cavitation and NPSH, enabling the end user to improve all the factors involved. Prepared by Europump - European Association of Pump Manufacturers - this book contains the results of years of research work and practical experience by leading European educational institutions and pump manufacturers to give a valuable unbiased guide which is applicable to all types of rotodynamic pumps and related systems.
Hydrodynamics of Pumps is a reference for pump experts and a textbook for advanced students. It examines the fluid dynamics of liquid turbomachines, particularly pumps, focusing on special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to problems and cause a significantly different set of concerns than those in gas turbines. These are the potential for cavitation and the high density of liquids, which enhances the possibility of damaging, unsteady flows and forces. The book begins with an introduction to the subject, including cavitation, unsteady flows and turbomachinery, basic pump design and performance principles. Chapter topics include flow features, cavitation parameters and inception, bubble dynamics, cavitation effects on pump performance, and unsteady flows and vibration in pumps - discussed in the three final chapters. The book is richly illustrated and includes many practical examples.
Specifically for the pump user, this book concentrates on the identification and solution of problems associated with existing centrifugal pumps. It gives specific examples on how to modify pump performance for increased efficiency and better quality control, which turn into long-term cost savings. Some basic theory is included to give the reader greater understanding of the problems being encountered and attacked.